Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2021_14_3_a6, author = {Evgeny B. Durakov}, title = {Sharply 3-transitive groups with finite element}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {344--350}, publisher = {mathdoc}, volume = {14}, number = {3}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JSFU_2021_14_3_a6/} }
TY - JOUR AU - Evgeny B. Durakov TI - Sharply 3-transitive groups with finite element JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2021 SP - 344 EP - 350 VL - 14 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2021_14_3_a6/ LA - en ID - JSFU_2021_14_3_a6 ER -
Evgeny B. Durakov. Sharply 3-transitive groups with finite element. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 14 (2021) no. 3, pp. 344-350. http://geodesic.mathdoc.fr/item/JSFU_2021_14_3_a6/
[1] H. Wähling, Theorie der Fastkörper, Thalen Ferlag, Essen, 1987
[2] M. Hall, Group Theory, IL, M., 1962 (in Russian)
[3] O.H. Kegel, “Zur Structur lokal endlicher Zassenhausgruppen”, Arch. Math., 18 (1967), 337–348
[4] V.D. Mazurov, “On infinite groups with abelian centralizers of involutions”, Algebra and Logic, 39:1 (2000), 74–86 (in Russian)
[5] T. Grundhöfer, E. Jabara, “Fixed-point-free 2-finite automorphism groups”, Arch. Math., 97 (2011), 219–223
[6] A.I. Sozutov, “On Shunkov Groups Acting Freely on Abelian Groups”, Sib. math. zh., 54:1 (2013), 188–198 (in Russian)
[7] A.I. Sozutov, E.B. Durakov, “On the local finiteness of periodic exactly triply transitive groups”, Algebra and Logic, 54:1 (2015), 70–84
[8] E. Rips, Y. Segev, K. Tent, A sharply 2-transitive group without a non-trivial abelian normal subgroup, 2014, 17 pp.
[9] K. Tent, M. Ziegler, “Sharply 2-transitive groups”, Advances in Geometry, 16:1 (2014), 1–5 | DOI
[10] K. Tent, “Sharply 3-tranzitive groups”, Advances in Mathematics, 286 (2016), 722–728
[11] A.I. Sozutov, E.B. Durakov, O.V. Kravtsova, “On some sharply triply transitive groups”, Algebra, logic and applications, Abstracts report Int. Conf. (Krasnoyarsk, July 19–25, 2010), 86–89 (in Russian)
[12] E.B. Durakov, “Exactly multiply transitive groups”, Information technologies in math and mathematical education, Materials of the IX All-Russian scientific and methodological conference with international participation, Krasnoyarsk State Pedagogical University named after V. P. Astafieva, 2020, 17–21 (in Russian)
[13] A.I. Sozutov, O.V. Kravtsova, “On $KT$-fields and exactly triply transitive groups”, Algebra and Logic, 57:2 (2018), 232–242
[14] E.B. Durakov, E.V. Bugaeva, I.V. Sheveleva, “On Sharply Doubly-Transitive Groups”, J. Sib. Feder. University. Mathematics and physics, 6 (2013), 28–32
[15] A.M. Popov, A.I. Sozutov, V.P. Shunkov, Groups with Frobenius systems subgroups, KSTU Publishing House, Krasnoyarsk, 2004 (in Russian)
[16] A.I. Sozutov, N.M. Suchkov, N.G. Suchkova,, Infinite groups with involutions, Siberian Federal University, Krasnoyarsk, 2011 (in Russian)
[17] Mir, M., 1985 (in Russian)
[18] D.V. Lytkina, A.I. Sozutov, A.A. Shlepkin, “Periodic Groups of the $2$-rank two saturated with finite simple groups”, Sibirsk. electron. mat. izv., 15 (2018), 786–796 (in Russian) | DOI
[19] V.M. Busarkin, Yu.M. Gorchakov, Finite split groups, Nauka, M., 1968 (in Russian)
[20] J.L. Alperin, R. Brauer, D. Gorenstein, “Finite simple groups of 2-rang two”, Scripta Math., 29:3–4, Collection of articles dedicated to the memori of Abraham Adrian Albert (1973), 191–214
[21] A.I. Sozutov, E.B. Durakov, “Sharply doubly transitive groups with generalized finite elements”, Siberian Math. J., 58:5 (2017), 887–890 | DOI