Limits of risks ratios of shrinkage estimators under the balanced loss function
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 14 (2021) no. 3, pp. 301-312.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we study the estimation of a multivariate normal mean under the balanced loss function. We present here a class of shrinkage estimators which generalizes the James-Stein estimator and we are interested to establish the asymptotic behaviour of risks ratios of these estimators to the maximum likelihood estimators (MLE). Thus, in the case where the dimension of the parameter space and the sample size are large, we determine the sufficient conditions for that the estimators cited previously are minimax.
Keywords: balanced Loss Function, James-Stein estimator, multivariate Gaussian random variable, non-central chi-square distribution, shrinkage estimators.
@article{JSFU_2021_14_3_a3,
     author = {Mekki Terbeche and Abdelkader Benkhaled and Abdenour Hamdaoui},
     title = {Limits of risks ratios of shrinkage estimators under the balanced loss function},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {301--312},
     publisher = {mathdoc},
     volume = {14},
     number = {3},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2021_14_3_a3/}
}
TY  - JOUR
AU  - Mekki Terbeche
AU  - Abdelkader Benkhaled
AU  - Abdenour Hamdaoui
TI  - Limits of risks ratios of shrinkage estimators under the balanced loss function
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2021
SP  - 301
EP  - 312
VL  - 14
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2021_14_3_a3/
LA  - en
ID  - JSFU_2021_14_3_a3
ER  - 
%0 Journal Article
%A Mekki Terbeche
%A Abdelkader Benkhaled
%A Abdenour Hamdaoui
%T Limits of risks ratios of shrinkage estimators under the balanced loss function
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2021
%P 301-312
%V 14
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2021_14_3_a3/
%G en
%F JSFU_2021_14_3_a3
Mekki Terbeche; Abdelkader Benkhaled; Abdenour Hamdaoui. Limits of risks ratios of shrinkage estimators under the balanced loss function. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 14 (2021) no. 3, pp. 301-312. http://geodesic.mathdoc.fr/item/JSFU_2021_14_3_a3/

[1] C. Stein, “Inadmissibilty of the usual estimator for the mean of a multivariate normal distribution”, Proc 3th Berkeley Symp. Math. Statist. Prob., v. 1, Univ. of California Press, Berkeley, 1956, 197–206

[2] W. James, C. Stein, “Estimation of quadratic loss”, Proc 4th Berkeley Symp. Math. Statist. Prob., v. 1, Univ. of California Press, Berkeley, 1961, 361–379

[3] B. Efron, C.N. Morris, “Stein's estimation rule and its competitors: An empirical Bayes approach”, J. Amer. Statist. Assoc., 68 (1973), 117–130

[4] D. Benmansour, A. Hamdaoui, “Limit of the ratio of risks of James-Stein estimators with unknown variance”, Far East J. Theo. Stat., 36:1 (2011), 31–53

[5] G. Casella, J.T. Hwang, “Limit expressions for the risk of the James-Stein estimators”, Canad. J. Statist., 4 (1982), 305–309

[6] A. Benkhaled, A. Hamdaoui, “General classes of shrinkage estimators for the multivariate normal mean with unknown variance: minimaxity and limit of risks ratios”, Kragujevac J. Math., 46:2 (2019), 193–213

[7] A. Hamdaoui, A. Benkhaled, N. Mezouar, “Minimaxity and limits of risks ratios of shrinkage estimators of a multivariate normal mean in the bayesian case”, Stat., Optim. Inf. Comput., 8 (2020), 507–520

[8] A. Zellner, “Bayesian and non-Bayesian estimation using balanced loss functions”, Statistical Decision Theory and Methods, 7, eds. J. O. Berger, S. S. Gupta, Springer, New York, 1994, 337–390

[9] H. Guikai, L. Qingguo, Y. Shenghua, “Risk Comparison of Improved Estimators in a Linear Regression Model with Multivariate t Errors under Balanced Loss Function”, J. Appl. Math., 354 (2014), 1–7

[10] H. Karamikabir, M. Afshari, M. Arashi, “Shrinkage estimation of non-negative mean vector with unknown covariance under balance loss”, J. Inequal. Appl., 2018, 1–11

[11] N. Sanjari Farsipour, A. Asgharzadeh, “Estimation of a normal mean relative to balanced loss functions”, Statistical Papers, 45 (2004), 279–286

[12] K. Selahattin, D. Issam, “The optimal extended balanced loss function estimators”, J. Comput. Appl. Math., 345 (2019), 86–98

[13] A. Hamdaoui, A. Benkhaled, M. Terbeche, “On Minimaxity and limit of risks ratios of James-Stein estimator under the balanced loss function”, Kragujevac J. Math., 47:3 (2020), 459–479

[14] A.F. Steven, The theory of linear models and multivariate analysis, John Wiley and Sons, Inc., 1981, 9–10

[15] C. Stein, “Estimation of the mean of a multivariate normal distribution”, Ann. Statis., 9:6 (1981), 1135–1151

[16] D. Benmansour, T. Mourid, “Etude d'une classe d'estimateurs avec rétrécisseur de la moyenne d'une loi gaussienne”, Ann. I.S.U.P., 51 (2007), 83–106

[17] A. Hamdaoui, D. Benmansour, “Asymptotic properties of risks ratios of shrinkage estimators”, Hacet. J. Math. Stat., 44:5 (2015), 1181–1195