A note on the conjugacy between two critical circle maps
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 14 (2021) no. 3, pp. 287-300

Voir la notice de l'article provenant de la source Math-Net.Ru

We study a conjugacy between two critical circle homeomorphisms with irrational rotation number. Let $f_{i}, i=1,2$ be a $C^{3}$ circle homeomorphisms with critical point $x_{cr}^{(i)}$ of the order $2m_{i}+1$. We prove that if $2m_{1}+1 \neq 2m_{2}+1$, then conjugating between $f_{1}$ and $f_{2}$ is a singular function.
Keywords: circle homeomorphism, critical point, conjugating map, rotation number, singular function.
@article{JSFU_2021_14_3_a2,
     author = {Utkir A. Safarov},
     title = {A note on the conjugacy between two critical circle maps},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {287--300},
     publisher = {mathdoc},
     volume = {14},
     number = {3},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2021_14_3_a2/}
}
TY  - JOUR
AU  - Utkir A. Safarov
TI  - A note on the conjugacy between two critical circle maps
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2021
SP  - 287
EP  - 300
VL  - 14
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2021_14_3_a2/
LA  - en
ID  - JSFU_2021_14_3_a2
ER  - 
%0 Journal Article
%A Utkir A. Safarov
%T A note on the conjugacy between two critical circle maps
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2021
%P 287-300
%V 14
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2021_14_3_a2/
%G en
%F JSFU_2021_14_3_a2
Utkir A. Safarov. A note on the conjugacy between two critical circle maps. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 14 (2021) no. 3, pp. 287-300. http://geodesic.mathdoc.fr/item/JSFU_2021_14_3_a2/