A note on the conjugacy between two critical circle maps
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 14 (2021) no. 3, pp. 287-300.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study a conjugacy between two critical circle homeomorphisms with irrational rotation number. Let $f_{i}, i=1,2$ be a $C^{3}$ circle homeomorphisms with critical point $x_{cr}^{(i)}$ of the order $2m_{i}+1$. We prove that if $2m_{1}+1 \neq 2m_{2}+1$, then conjugating between $f_{1}$ and $f_{2}$ is a singular function.
Keywords: circle homeomorphism, critical point, conjugating map, rotation number, singular function.
@article{JSFU_2021_14_3_a2,
     author = {Utkir A. Safarov},
     title = {A note on the conjugacy between two critical circle maps},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {287--300},
     publisher = {mathdoc},
     volume = {14},
     number = {3},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2021_14_3_a2/}
}
TY  - JOUR
AU  - Utkir A. Safarov
TI  - A note on the conjugacy between two critical circle maps
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2021
SP  - 287
EP  - 300
VL  - 14
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2021_14_3_a2/
LA  - en
ID  - JSFU_2021_14_3_a2
ER  - 
%0 Journal Article
%A Utkir A. Safarov
%T A note on the conjugacy between two critical circle maps
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2021
%P 287-300
%V 14
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2021_14_3_a2/
%G en
%F JSFU_2021_14_3_a2
Utkir A. Safarov. A note on the conjugacy between two critical circle maps. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 14 (2021) no. 3, pp. 287-300. http://geodesic.mathdoc.fr/item/JSFU_2021_14_3_a2/

[1] V.I. Arnol'd, “Small denominators: I. Mappings from the circle onto itself”, Izv. Akad. Nauk SSSR, Ser. Mat., 25 (1961), 21–86 (in Russian)

[2] A. Avila, “On rigidity of critical circle maps”, Bull. Math. Soc., 44:4 (2013), 611–619 | DOI

[3] I.P. Cornfeld, S.V. Fomin, Ya.G. Sinai, Ergodic Theory, Springer Verlag, Berlin, 1982

[4] A. Denjoy, “Sur les courbes définies par les équations différentielles à la surface du tore”, J. Math. Pures Appl., 11 (1932), 333–375

[5] A.A. Dzhalilov, K.M. Khanin, “On invariant measure for homeomorphisms of a circle with a point of break”, Funct. Anal. Appl., 32:3 (1998), 153–161

[6] E. de Faria, W. de Melo, “Rigidity of critical circle mappings I”, J. Eur. Math. Soc. (JEMS), 1:4 (1999), 339–392

[7] J. Graczyk, G. Swiatek, “Singular measures in circle dynamics”, Commun. Math. Phys., 157 (1993), 213–230

[8] P. Guarino, M. Martens, W. de Melo, “Rigidity of critical circle maps”, Duke Math. J., 167 (2018), 2125–2188 | DOI

[9] M. Herman, “Sur la conjugaison différentiable des difféomorphismes du cercle à des rotations”, Inst. Hautes Etudes Sci. Publ. Math., 49 (1979), 225–234

[10] K. Khanin, “Universal estimates for critical circle mappings”, CHAOS, 2 (1991), 181–186

[11] K. Khanin, A. Teplinskii, “Robust rigidity for circle diffeomorphisms with singularities”, Invent. math., 169 (2007), 193–218 | DOI

[12] K.M. Khanin, Ya.G. Sinai, “Smoothness of conjugacies of diffeomorphisms of the circle with rotations”, Usp. Mat. Nauk, 44 (1989), 57–82

[13] Y. Katznelson, D. Ornstein, “The absolute continuity of the conjugation of certain diffeomorphisms of the circle”, Ergod. Theor. Dyn. Syst., 9 (1989), 681–690

[14] D. Khmelev, M. Yampolski, “Rigidity problem for analytic critical circle maps”, Mos. Math. Journ., 6:2 (2006), 317–351

[15] J. Moser, “A rapid convergent iteration method and non-linear differential equations. II”, Ann. Scuola Norm. Sup. Pisa, 20:3 (1966), 499–535

[16] G. Swiatek, “Rational rotation numbers for maps of the circle”, Commun. Math. Phys., 119:1 (1988), 109–128

[17] J.C. Yoccoz, “Il n'a a pas de contre-exemple de Denjoy analytique”, C. R. Acad. Sci., Paris, Ser. I, Math., 298:7 (1984), 141–144