Rheological properties of PVDF solutions
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 14 (2021) no. 3, pp. 265-272.

Voir la notice de l'article provenant de la source Math-Net.Ru

The rheological properties of polyvinylidene fluoride (PVDF) solutions in N-methylpyrrolidone were studied using the rheometric method. It was shown that the viscosity of polymer solutions decreases non-linearly with increasing temperature. The viscosity of the N-methylpyrrolidone used as solvent remains practically unchanged. It was shown that solutions exhibit Newtonian behaviour at concentrations less than 7 wt.%. At higher concentrations, solutions exhibit properties of pseudoplastic fluid.
Keywords: liquids, viscosity, rheological properties, Newtonian and non-Newtonian behaviour, polyvinylidene fluoride (PVDF), N-methylpyrrolidone, materials performance, temperature dependences.
Mots-clés : structure
@article{JSFU_2021_14_3_a0,
     author = {Bair B. Damdinov and Victoria A. Danilova and Andrey V. Minakov and Maxim I. Pryazhnikov},
     title = {Rheological properties of {PVDF} solutions},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {265--272},
     publisher = {mathdoc},
     volume = {14},
     number = {3},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2021_14_3_a0/}
}
TY  - JOUR
AU  - Bair B. Damdinov
AU  - Victoria A. Danilova
AU  - Andrey V. Minakov
AU  - Maxim I. Pryazhnikov
TI  - Rheological properties of PVDF solutions
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2021
SP  - 265
EP  - 272
VL  - 14
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2021_14_3_a0/
LA  - en
ID  - JSFU_2021_14_3_a0
ER  - 
%0 Journal Article
%A Bair B. Damdinov
%A Victoria A. Danilova
%A Andrey V. Minakov
%A Maxim I. Pryazhnikov
%T Rheological properties of PVDF solutions
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2021
%P 265-272
%V 14
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2021_14_3_a0/
%G en
%F JSFU_2021_14_3_a0
Bair B. Damdinov; Victoria A. Danilova; Andrey V. Minakov; Maxim I. Pryazhnikov. Rheological properties of PVDF solutions. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 14 (2021) no. 3, pp. 265-272. http://geodesic.mathdoc.fr/item/JSFU_2021_14_3_a0/

[1] I.A. Ike, L.F. Dumée, A. Groth, J.D. Orbell, M. Duke, J. Membr. Sci., 540 (2017), 200–211

[2] Ju Li, Z. Shan, E. Ma, MRS Bulletin, 39 (2014), 108–116

[3] D. Schlom, et al., MRS Bulletin, 39 (2014), 118–129

[4] K.J. Choi, et al., Science, 306 (2004), 1005–1009

[5] C. Lichtensteiger, M. Dawber, J.-M. Triscone, Topics in Applied Physics, 105 (2007), 305–338

[6] C. Ederer, N.A. Spaldin, Phys. Rev. Lett., 95 (2005), 1–4

[7] K. Hyun, S.H. Kim, K.H. Ahn, S.J. Lee, J. Non-Newton. Fluid Mech., 107 (2002), 51–65

[8] I.B. Esipov, O.M. Zozulya, A.V. Fokin, Acoustic Journal, 56:1 (2010), 124–134

[9] B.B. Badmaev, B.B. Damdinov, Acoustical Physics, 47:4 (2001), 487–489

[10] O.R. Budaev, M.N. Ivanova, B.B. Damdinov, Advances in Colloid and Interface Science, 104:1 (2003), 307–310

[11] A.V. Minakov, V.Y. Rudyak, M.I. Pryazhnikov, Colloids Surf., A: Physicochemical Eng., 554 (2018), 279–285

[12] A.V. Minakov, V.Y. Rudyak, M.I. Pryazhnikov, Heat Transfer Eng., 2020 | DOI

[13] K.F. Auyeung, Polym. Eng. Sci., 30:7 (1990), 44–56

[14] S. Ali, A.K. Raina, Makromol. Chem., 179 (1978), 2925–2930

[15] D.W. Chae, M.H. Kim, B.C. Kim, Korea-Australia Rheology Journal, 22:3 (2010), 229–234

[16] G. Lutringer, B. Meurer, G. Weill, Polymer, 32:5 (1991), 884–891

[17] E. Bernhardt, Processing of Thermoplastic Materials, Goskhimizdat, M., 1962 (in Russian)

[18] G.V. Vinogradov, A. Ya.Malkin, Rheology of polymers, Chemistry, M., 1977 (in Russian)