Asymptotic behavior of small perturbations for unsteady motion an ideal fluid jet
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 14 (2021) no. 2, pp. 204-212.

Voir la notice de l'article provenant de la source Math-Net.Ru

The stability problem of unsteady rotating circular jet motion of an ideal fluid is reduced to solving an initial-boundary value problem for Poincare–Sobolev type equation with an evolutionary condition on the jet free initial boundary. The solution of this problem is constructed by the method of variables separation. The asymptotic amplitudes behavior perturbations of the free jet boundary at $ t \rightarrow \infty $ is found. The results obtained are compared with the known results on the stability of the potential jet motion.
Keywords: unsteady motion, free boundary, equations of the Poincare–Sobolev type, instability.
Mots-clés : small perturbations
@article{JSFU_2021_14_2_a7,
     author = {Viktor K. Andreev},
     title = {Asymptotic behavior of small perturbations for unsteady motion an ideal fluid jet},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {204--212},
     publisher = {mathdoc},
     volume = {14},
     number = {2},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2021_14_2_a7/}
}
TY  - JOUR
AU  - Viktor K. Andreev
TI  - Asymptotic behavior of small perturbations for unsteady motion an ideal fluid jet
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2021
SP  - 204
EP  - 212
VL  - 14
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2021_14_2_a7/
LA  - en
ID  - JSFU_2021_14_2_a7
ER  - 
%0 Journal Article
%A Viktor K. Andreev
%T Asymptotic behavior of small perturbations for unsteady motion an ideal fluid jet
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2021
%P 204-212
%V 14
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2021_14_2_a7/
%G en
%F JSFU_2021_14_2_a7
Viktor K. Andreev. Asymptotic behavior of small perturbations for unsteady motion an ideal fluid jet. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 14 (2021) no. 2, pp. 204-212. http://geodesic.mathdoc.fr/item/JSFU_2021_14_2_a7/

[1] N.N. Moiseev, V.V. Rumyantsev, Dynamics of Bodies with Fluid-Filled Cavities, Nauka, M., 1965 (in Russian) | MR | Zbl

[2] V.G. Babskii, N.D. Kopachevskii, A.D. Myshkis, L.A. Slobozhanin, A.D. Tyuptsov, Low-Gravity Fluid Mechanics, Nauka, M., 1976 (in Russian) | MR

[3] A. Poincaré, “Sur l'équilibre d'une masee fluide animée d'un mouvement de rotation”, Acta Math., 7 (1985), 259–380 | DOI | MR

[4] H. Lamb, Hydrodynamics, Gostekhizdat, M.–L., 1947 (in Russian)

[5] S.L. Sobolev, “On a new problem of mathematical physics”, Izv. Akad. Nauk SSSR Ser. Mat., 18:1 (1954), 3–50 | MR | Zbl

[6] S.L. Sobolev, “On Symmetric Top Motion with a Fluid-Filled Cavity”, Prikl. Mekh. Tekh. Fiz., 3 (1960), 20–55 (in Russian) | Zbl

[7] T.I. Zelenyak, Selected Problems of the Qualitative Theory of Partial Differential Equations, Novosibirsk Univ., Novosibirsk, 1970 (in Russian)

[8] S.V. Uspenskij, G.V. Demidenko, V.G. Perepelkin, Imbedding theorems and applications to differential equations, Nauka, Novosibirsk, 1984 (in Russian) | MR | Zbl

[9] V.M. Kamenkovich, A.S. Monin, Ocean Physics, Nauka, M., 1978 (in Russian)

[10] M.J. Lighthill, “On waves generated in dispersive systems by travelling forcing effects, with applications to the dynamics of rotating fluids”, Jour. Fluid Mech., 27:4 (1967), 725–752 | DOI | MR | Zbl

[11] H.P. Greenspan, “On the transient motion of a contained rotatinh fluid”, Jour. Fluid Mech., 20:4 (1964), 673–696 | DOI | MR | Zbl

[12] L.V. Ovsyannikov, “General equations and examples”, Problems of Unsteady Free-Boundary Fluid Flows, Nauka, Novosibirsk, 1967, 5–75 (in Russian)

[13] V.K. Andreev, Stability of unsteady fluid motions with a free boundary, Nauka, Novosibirsk, 1992 (in Russian) | MR | Zbl

[14] M.V. Fedoryuk, Asymptotic Methods for Linear Ordinary Differential Equations, Nauka, M., 1983 (in Russian) | MR | Zbl