Asymptotic behavior of small perturbations for unsteady motion an ideal fluid jet
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 14 (2021) no. 2, pp. 204-212

Voir la notice de l'article provenant de la source Math-Net.Ru

The stability problem of unsteady rotating circular jet motion of an ideal fluid is reduced to solving an initial-boundary value problem for Poincare–Sobolev type equation with an evolutionary condition on the jet free initial boundary. The solution of this problem is constructed by the method of variables separation. The asymptotic amplitudes behavior perturbations of the free jet boundary at $ t \rightarrow \infty $ is found. The results obtained are compared with the known results on the stability of the potential jet motion.
Keywords: unsteady motion, free boundary, equations of the Poincare–Sobolev type, instability.
Mots-clés : small perturbations
@article{JSFU_2021_14_2_a7,
     author = {Viktor K. Andreev},
     title = {Asymptotic behavior of small perturbations for unsteady motion an ideal fluid jet},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {204--212},
     publisher = {mathdoc},
     volume = {14},
     number = {2},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2021_14_2_a7/}
}
TY  - JOUR
AU  - Viktor K. Andreev
TI  - Asymptotic behavior of small perturbations for unsteady motion an ideal fluid jet
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2021
SP  - 204
EP  - 212
VL  - 14
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2021_14_2_a7/
LA  - en
ID  - JSFU_2021_14_2_a7
ER  - 
%0 Journal Article
%A Viktor K. Andreev
%T Asymptotic behavior of small perturbations for unsteady motion an ideal fluid jet
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2021
%P 204-212
%V 14
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2021_14_2_a7/
%G en
%F JSFU_2021_14_2_a7
Viktor K. Andreev. Asymptotic behavior of small perturbations for unsteady motion an ideal fluid jet. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 14 (2021) no. 2, pp. 204-212. http://geodesic.mathdoc.fr/item/JSFU_2021_14_2_a7/