Supercritical convection of water in an elongated cavity at a given vertical heat flux
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 14 (2021) no. 2, pp. 184-192.

Voir la notice de l'article provenant de la source Math-Net.Ru

The supercritical modes of water convection are investigated at room temperature in an elongated horizontal cavityes, with a width-to-height ratios of 2 : 1 and 3 : 1. The Prandtl number is assumed to be equal to seven. A constant heat flux is set at the upper free and lower solid boundaries, and the lateral solid boundaries are assumed to be thermally insulated. Calculations carried out by the finite-difference method for values of the Rayleigh number exceeding the critical one by up to thirty times have shown that in the indicated interval of Rayleigh numbers in both cavities in the supercritical region, a single-vortex steady state is realized.
Keywords: thermal convection, fixed heat flux.
Mots-clés : bifurcations
@article{JSFU_2021_14_2_a5,
     author = {Vadim A. Sharifulin and Tatyana P. Lyubimova},
     title = {Supercritical convection of water in an elongated cavity at a given vertical heat flux},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {184--192},
     publisher = {mathdoc},
     volume = {14},
     number = {2},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2021_14_2_a5/}
}
TY  - JOUR
AU  - Vadim A. Sharifulin
AU  - Tatyana P. Lyubimova
TI  - Supercritical convection of water in an elongated cavity at a given vertical heat flux
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2021
SP  - 184
EP  - 192
VL  - 14
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2021_14_2_a5/
LA  - en
ID  - JSFU_2021_14_2_a5
ER  - 
%0 Journal Article
%A Vadim A. Sharifulin
%A Tatyana P. Lyubimova
%T Supercritical convection of water in an elongated cavity at a given vertical heat flux
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2021
%P 184-192
%V 14
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2021_14_2_a5/
%G en
%F JSFU_2021_14_2_a5
Vadim A. Sharifulin; Tatyana P. Lyubimova. Supercritical convection of water in an elongated cavity at a given vertical heat flux. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 14 (2021) no. 2, pp. 184-192. http://geodesic.mathdoc.fr/item/JSFU_2021_14_2_a5/

[1] E.M. Sparrow, R.J. Goldstein, V.K. Jonsson, “Thermal instability in a horizontal fluid layer: effect of boundary conditions and non-linear temperature proille”, Journal of Fluid Mechanics, 18:4 (1964), 513–528 | DOI | MR | Zbl

[2] L. Kh. Ingel, “On the theory of slope flows”, Journal of Engineering Physics and Thermophysics, 91:3 (2018), 641–647 | DOI

[3] V.B. Bekezhanova, “Stability of the equilibrium state in a convection model with nonlinear temperature and pressure dependences of density”, Journal of applied mechanics and technical physics, 48:2 (2007), 200–207 | DOI | MR | Zbl

[4] T.P. Lyubimova, S.A. Prokopev, “Nonlinear regimes of Soret-driven convection of ternary fluid with fixed vertical heat flux at the boundaries”, The European Physical Journal E, 42:6 (2019), 76 | DOI

[5] A.N. Sharifulin, “Poludnitsin Anatoliy N. The borders of existence of anomalous convection flow in the inclined square cylinder: Numerical determination”, St. Petersburg Polytechnical University Journal: Physics and Mathematics, 2:2 (2016), 150–156 | DOI | MR

[6] A. Thom, C.J. Apelt, Field computations in engineering and physics, 1961 | MR

[7] D.V. Lyubimov, T.P. Lyubimova, V.A. Sharifulin, “Onset of convection in a horizontal fluid layer in the presence of density inversion under given heat fluxes at its boundaries”, Fluid Dynamics, 47:4 (2012), 448–453 | DOI | MR | Zbl

[8] V.A. Sharifulin, T.P. Lyubimova, “Structure of critical perturbations in a horizontal layer of melted water with the prescribed heat flux at the boundaries”, IOP Conf. Series: Materials Science and Engineering, 208 (2017), 012025 | DOI

[9] R.V. Sagitov, A.N. Sharifulin, “Stability of advective flow in an inclined plane fluid layer bounded by solid planes with a longitudinal temperature gradient. 1. Unstable stratification”, Journal of Applied Mechanics and Technical Physics, 58:2 (2017), 264–270 | DOI | MR

[10] R.V. Sagitov, A.N. Sharifulin, “Stability of advective flow in an inclined plane fluid layer bounded by solid planes with a longitudinal temperature gradient 2. Stable stratification”, Journal of Applied Mechanics and Technical Physics, 58:4 (2017), 687–692 | DOI | MR