On the theory of $\psi $-hilfer nonlocal Cauchy problem
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 14 (2021) no. 2, pp. 159-175.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we derive the representation formula of the solution for $\psi $-Hilfer fractional differential equation with constant coefficient in the form of Mittag-Leffler function by using Picard's successive approximation. Moreover, by using some properties of Mittag-Leffler function and fixed point theorems such as Banach and Schaefer, we introduce new results of some qualitative properties of solution such as existence and uniqueness. The generalized Gronwall inequality lemma is used in analyze $\mathrm{E}_{\alpha}$-Ulam-Hyers stability. Finally, one example to illustrate the obtained results.
Keywords: fractional differential equations, fractional derivatives, $\mathrm{E}_{\alpha}$-Ulam-Hyers stability, fixed point theorem.
@article{JSFU_2021_14_2_a3,
     author = {Mohammed A. Almalahi and Satish K. Panchal},
     title = {On the theory of $\psi $-hilfer nonlocal {Cauchy} problem},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {159--175},
     publisher = {mathdoc},
     volume = {14},
     number = {2},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2021_14_2_a3/}
}
TY  - JOUR
AU  - Mohammed A. Almalahi
AU  - Satish K. Panchal
TI  - On the theory of $\psi $-hilfer nonlocal Cauchy problem
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2021
SP  - 159
EP  - 175
VL  - 14
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2021_14_2_a3/
LA  - en
ID  - JSFU_2021_14_2_a3
ER  - 
%0 Journal Article
%A Mohammed A. Almalahi
%A Satish K. Panchal
%T On the theory of $\psi $-hilfer nonlocal Cauchy problem
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2021
%P 159-175
%V 14
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2021_14_2_a3/
%G en
%F JSFU_2021_14_2_a3
Mohammed A. Almalahi; Satish K. Panchal. On the theory of $\psi $-hilfer nonlocal Cauchy problem. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 14 (2021) no. 2, pp. 159-175. http://geodesic.mathdoc.fr/item/JSFU_2021_14_2_a3/

[1] M.S. Abdo, S.K. Panchal, “Fractional integro-differential equations involving $\psi $-Hilfer fractional derivative”, Advances in Applied Mathematics and Mechanics, 11 (2019), 338–359 | DOI | MR

[2] M.A. Almalahi, S.K. Panchal, “E$_{\alpha }$-Ulam-Hyers stability result for $\psi $-Hilfer Nonlocal Fractional Differential Equation”, Discontinuity, Nonlinearity, and Complexity, 2020 (to appear) | Zbl

[3] M.A. Almalahi, M.S. Abdo, S.K. Panchal, “Existence and Ulam–Hyers–Mittag-Leffler stability results of $\psi $-Hilfer nonlocal Cauchy problem”, Rend. Circ. Mat. Palermo, II. Ser., 2020 | DOI | MR | Zbl

[4] M.A. Almalahi, M.S. Abdo, S.K. Panchal, “$\psi $-Hilfer Fractional functional differential equation by Picard operator method”, Journal of Applied Nonlinear Dynamics, 2020 | DOI | MR | Zbl

[5] A. Arara, M. Benchohra, N. Hamidi, J.J. Nieto, “Fractional order differential equations on an unbounded domain”, Nonlinear Anal. Theory Methods Appl., 72 (2010), 580–586 | DOI | MR | Zbl

[6] K. Deimling, Nonlinear Functional Analysis, Springer, New York, 1985 | MR | Zbl

[7] K.M. Furati, M.D. Kassim, “Existence and uniqueness for a problem involving Hilfer fractional derivative”, Comput. Math. Applic., 64 (2012), 1616–1626 | DOI | MR | Zbl

[8] Z. Gao, X. Yu, “Existence results for BVP of a class of Hilfer fractional differential equations”, Journal of Applied Mathematics and Computing, 56:1–2 (2018), 217–233 | DOI | MR | Zbl

[9] C.S. Goodrich, “Existence of a positive solution to a class of fractional differential equations”, Appl. Math. Lett., 23 (2010), 1050–1055 | DOI | MR | Zbl

[10] R. Hilfer, Application of Fractional Calculus in Physics, World Scientific, Singapore, 1999 | MR

[11] D.H. Hyers, G. Isac, Th.M. Rassias, Stability of Functional Equations in Several Variables, Progr. Nonlinear Differential Equations Appl., 34, Birkhauser, Boston, 1998 | MR | Zbl

[12] A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, 207, Elsevier, Amsterdam, 2006 | MR

[13] K.D. Kucche, A.D. Mali, J. Vanterler, C. da Sousa, “On the Nonlinear $\psi$-Hilfer Fractional Differential Equations”, Computational and Applied Mathematics, 38:73 (2019) | DOI | MR | Zbl

[14] K.D. Kucche, A.D. Mali, “Initial time difference quasilinearization method for fractional differential equations involving generalized Hilfer fractional derivative”, Computational and Applied Mathematics, 39:31 (2020) | DOI | MR

[15] J.P. Kharade, K.D. Kucche, “On the impulsive implicit $\psi $-Hilfer fractional differential equations with delay”, Mathematical Methods in the Applied Sciences, 43:4 (2020), 1938–1952 | DOI | MR | Zbl

[16] K. Liu, J. Wang, D.O'Regan, “Ulam–Hyers–Mittag-Leffler stability for $\psi $-Hilfer fractional-order delay differential equations”, Advances in Difference Equations, 50:1 (2019) | DOI | MR

[17] A.D. Mali, K.D. Kucche, Nonlocal Boundary Value Problem for Generalized Hilfer Implicit Fractional Differential Equations, 2020, arXiv: 2001.08479 | MR

[18] E.C. Oliveira, J.V.D.C. Sousa, “Ulam–Hyers–Rassias stability for a class of fractional integro-differential equations”, Results Math., 73 (2018), 111 | DOI | MR | Zbl

[19] I. Podlubny, Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications, Math. Sci. Eng., 198, Elsevier, Amsterdam, 1999 | MR

[20] T.M. Rassias, “On the stability of the linear mapping in Banach spaces”, Proc. Amer. Math. Soc., 72:2 (1978), 297–300 | DOI | MR | Zbl

[21] S.G. Samko, A.A. Kilbas, O.I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach, Yverdon, 1987 | MR

[22] J.V.C. Sousa, E.C. de Oliveira, “On the $\psi $ -Hilfer fractional derivative”, Commun. Nonlinear Sci. Numer. Simul., 60 (2018), 72–91 | DOI | MR | Zbl

[23] J. Sousa, E.C. de Oliveira, “A Gronwall inequality and the Cauchy-type problem by means of $\psi $-Hilfer operator”, Differential equations and applications, 11:1 (2019), 87–106 | DOI | MR | Zbl

[24] J.V.D.C. Sousa, K.D. Kucche, E.C. De Oliveira, “Stability of $\psi $-Hilfer impulsive fractional differential equations”, Applied Mathematics Letters, 88 (2019), 73–80 | DOI | MR | Zbl

[25] J.V.D.C. Sousa, E.C. de Oliveira, K.D. Kucche, “On the fractional functional differential equation with abstract Volterra operator”, Bulletin of the Brazilian Mathematical Society. New Series, 50:4 (2019), 803–822 | DOI | MR | Zbl

[26] J.V.D.C. Sousa, E.C. de Oliveira, “On the Ulam–Hyers-Rassias stability for nonlinear fractional differential equations using the $\psi$-Hilfer operator”, Journal of Fixed Point Theory and Applications, 20:3 (2018), 96 | DOI | MR | Zbl

[27] J.V.D.C. Sousa, K.D. Kucche, E.C. de Oliveira, “On the Ulam-Hyers stabilities of the solutions of $\psi $-Hilfer fractional differential equation with abstract Volterra operator”, Mathematical Methods in the Applied Sciences, 42:9 (2019), 3021–3032 | DOI | MR | Zbl

[28] S.M. Ulam, A Collection of Mathematical Problems, Interscience Tracts in Pure and Applied Mathematics, 8, Interscience, New York–London, 1960 | MR | Zbl

[29] J.R. Wang, M. Feckan, Y. Zhou, “Presentation of solutions of impulsive fractional Langevin equations and existence results”, Eur. Phys. J. Spec. Top., 222 (2013), 1857–1874 | DOI

[30] H. Wang, “Existence of solutions for fractional anti-periodic BVP”, Results Math., 88 (2015), 227–245 | DOI | MR

[31] J. Wang, Y. Zhang, “Nonlocal initial value problems for differential equations with Hilfer fractional derivative”, Appl. Math. Comput., 266 (2015), 850–859 | DOI | MR | Zbl

[32] J. Wang, X. Li, “E$_{\alpha }$-Ulam type stability of fractional order ordinary differential equations”, Journal of Applied Mathematics and Computing, 45:1–2 (2014), 449–459 | DOI | MR | Zbl

[33] M.A. Almalahi, S.K. Panchal, “Some existence and stability results for $\psi$-Hilfer fractional implicit diferential equation with periodic conditions”, Journal of Mathematical Analysis and Modeling, 1:1 (2020), 1–19 | DOI