Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2021_14_2_a3, author = {Mohammed A. Almalahi and Satish K. Panchal}, title = {On the theory of $\psi $-hilfer nonlocal {Cauchy} problem}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {159--175}, publisher = {mathdoc}, volume = {14}, number = {2}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JSFU_2021_14_2_a3/} }
TY - JOUR AU - Mohammed A. Almalahi AU - Satish K. Panchal TI - On the theory of $\psi $-hilfer nonlocal Cauchy problem JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2021 SP - 159 EP - 175 VL - 14 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2021_14_2_a3/ LA - en ID - JSFU_2021_14_2_a3 ER -
%0 Journal Article %A Mohammed A. Almalahi %A Satish K. Panchal %T On the theory of $\psi $-hilfer nonlocal Cauchy problem %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2021 %P 159-175 %V 14 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2021_14_2_a3/ %G en %F JSFU_2021_14_2_a3
Mohammed A. Almalahi; Satish K. Panchal. On the theory of $\psi $-hilfer nonlocal Cauchy problem. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 14 (2021) no. 2, pp. 159-175. http://geodesic.mathdoc.fr/item/JSFU_2021_14_2_a3/
[1] M.S. Abdo, S.K. Panchal, “Fractional integro-differential equations involving $\psi $-Hilfer fractional derivative”, Advances in Applied Mathematics and Mechanics, 11 (2019), 338–359 | DOI | MR
[2] M.A. Almalahi, S.K. Panchal, “E$_{\alpha }$-Ulam-Hyers stability result for $\psi $-Hilfer Nonlocal Fractional Differential Equation”, Discontinuity, Nonlinearity, and Complexity, 2020 (to appear) | Zbl
[3] M.A. Almalahi, M.S. Abdo, S.K. Panchal, “Existence and Ulam–Hyers–Mittag-Leffler stability results of $\psi $-Hilfer nonlocal Cauchy problem”, Rend. Circ. Mat. Palermo, II. Ser., 2020 | DOI | MR | Zbl
[4] M.A. Almalahi, M.S. Abdo, S.K. Panchal, “$\psi $-Hilfer Fractional functional differential equation by Picard operator method”, Journal of Applied Nonlinear Dynamics, 2020 | DOI | MR | Zbl
[5] A. Arara, M. Benchohra, N. Hamidi, J.J. Nieto, “Fractional order differential equations on an unbounded domain”, Nonlinear Anal. Theory Methods Appl., 72 (2010), 580–586 | DOI | MR | Zbl
[6] K. Deimling, Nonlinear Functional Analysis, Springer, New York, 1985 | MR | Zbl
[7] K.M. Furati, M.D. Kassim, “Existence and uniqueness for a problem involving Hilfer fractional derivative”, Comput. Math. Applic., 64 (2012), 1616–1626 | DOI | MR | Zbl
[8] Z. Gao, X. Yu, “Existence results for BVP of a class of Hilfer fractional differential equations”, Journal of Applied Mathematics and Computing, 56:1–2 (2018), 217–233 | DOI | MR | Zbl
[9] C.S. Goodrich, “Existence of a positive solution to a class of fractional differential equations”, Appl. Math. Lett., 23 (2010), 1050–1055 | DOI | MR | Zbl
[10] R. Hilfer, Application of Fractional Calculus in Physics, World Scientific, Singapore, 1999 | MR
[11] D.H. Hyers, G. Isac, Th.M. Rassias, Stability of Functional Equations in Several Variables, Progr. Nonlinear Differential Equations Appl., 34, Birkhauser, Boston, 1998 | MR | Zbl
[12] A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, 207, Elsevier, Amsterdam, 2006 | MR
[13] K.D. Kucche, A.D. Mali, J. Vanterler, C. da Sousa, “On the Nonlinear $\psi$-Hilfer Fractional Differential Equations”, Computational and Applied Mathematics, 38:73 (2019) | DOI | MR | Zbl
[14] K.D. Kucche, A.D. Mali, “Initial time difference quasilinearization method for fractional differential equations involving generalized Hilfer fractional derivative”, Computational and Applied Mathematics, 39:31 (2020) | DOI | MR
[15] J.P. Kharade, K.D. Kucche, “On the impulsive implicit $\psi $-Hilfer fractional differential equations with delay”, Mathematical Methods in the Applied Sciences, 43:4 (2020), 1938–1952 | DOI | MR | Zbl
[16] K. Liu, J. Wang, D.O'Regan, “Ulam–Hyers–Mittag-Leffler stability for $\psi $-Hilfer fractional-order delay differential equations”, Advances in Difference Equations, 50:1 (2019) | DOI | MR
[17] A.D. Mali, K.D. Kucche, Nonlocal Boundary Value Problem for Generalized Hilfer Implicit Fractional Differential Equations, 2020, arXiv: 2001.08479 | MR
[18] E.C. Oliveira, J.V.D.C. Sousa, “Ulam–Hyers–Rassias stability for a class of fractional integro-differential equations”, Results Math., 73 (2018), 111 | DOI | MR | Zbl
[19] I. Podlubny, Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications, Math. Sci. Eng., 198, Elsevier, Amsterdam, 1999 | MR
[20] T.M. Rassias, “On the stability of the linear mapping in Banach spaces”, Proc. Amer. Math. Soc., 72:2 (1978), 297–300 | DOI | MR | Zbl
[21] S.G. Samko, A.A. Kilbas, O.I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach, Yverdon, 1987 | MR
[22] J.V.C. Sousa, E.C. de Oliveira, “On the $\psi $ -Hilfer fractional derivative”, Commun. Nonlinear Sci. Numer. Simul., 60 (2018), 72–91 | DOI | MR | Zbl
[23] J. Sousa, E.C. de Oliveira, “A Gronwall inequality and the Cauchy-type problem by means of $\psi $-Hilfer operator”, Differential equations and applications, 11:1 (2019), 87–106 | DOI | MR | Zbl
[24] J.V.D.C. Sousa, K.D. Kucche, E.C. De Oliveira, “Stability of $\psi $-Hilfer impulsive fractional differential equations”, Applied Mathematics Letters, 88 (2019), 73–80 | DOI | MR | Zbl
[25] J.V.D.C. Sousa, E.C. de Oliveira, K.D. Kucche, “On the fractional functional differential equation with abstract Volterra operator”, Bulletin of the Brazilian Mathematical Society. New Series, 50:4 (2019), 803–822 | DOI | MR | Zbl
[26] J.V.D.C. Sousa, E.C. de Oliveira, “On the Ulam–Hyers-Rassias stability for nonlinear fractional differential equations using the $\psi$-Hilfer operator”, Journal of Fixed Point Theory and Applications, 20:3 (2018), 96 | DOI | MR | Zbl
[27] J.V.D.C. Sousa, K.D. Kucche, E.C. de Oliveira, “On the Ulam-Hyers stabilities of the solutions of $\psi $-Hilfer fractional differential equation with abstract Volterra operator”, Mathematical Methods in the Applied Sciences, 42:9 (2019), 3021–3032 | DOI | MR | Zbl
[28] S.M. Ulam, A Collection of Mathematical Problems, Interscience Tracts in Pure and Applied Mathematics, 8, Interscience, New York–London, 1960 | MR | Zbl
[29] J.R. Wang, M. Feckan, Y. Zhou, “Presentation of solutions of impulsive fractional Langevin equations and existence results”, Eur. Phys. J. Spec. Top., 222 (2013), 1857–1874 | DOI
[30] H. Wang, “Existence of solutions for fractional anti-periodic BVP”, Results Math., 88 (2015), 227–245 | DOI | MR
[31] J. Wang, Y. Zhang, “Nonlocal initial value problems for differential equations with Hilfer fractional derivative”, Appl. Math. Comput., 266 (2015), 850–859 | DOI | MR | Zbl
[32] J. Wang, X. Li, “E$_{\alpha }$-Ulam type stability of fractional order ordinary differential equations”, Journal of Applied Mathematics and Computing, 45:1–2 (2014), 449–459 | DOI | MR | Zbl
[33] M.A. Almalahi, S.K. Panchal, “Some existence and stability results for $\psi$-Hilfer fractional implicit diferential equation with periodic conditions”, Journal of Mathematical Analysis and Modeling, 1:1 (2020), 1–19 | DOI