Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2021_14_2_a10, author = {Isakjan M. Khamdamov and Zoya S. Chay}, title = {Joint distribution of the number of vertices and the area of convex hulls generated by a uniform distribution in a convex polygon}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {230--241}, publisher = {mathdoc}, volume = {14}, number = {2}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JSFU_2021_14_2_a10/} }
TY - JOUR AU - Isakjan M. Khamdamov AU - Zoya S. Chay TI - Joint distribution of the number of vertices and the area of convex hulls generated by a uniform distribution in a convex polygon JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2021 SP - 230 EP - 241 VL - 14 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2021_14_2_a10/ LA - en ID - JSFU_2021_14_2_a10 ER -
%0 Journal Article %A Isakjan M. Khamdamov %A Zoya S. Chay %T Joint distribution of the number of vertices and the area of convex hulls generated by a uniform distribution in a convex polygon %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2021 %P 230-241 %V 14 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2021_14_2_a10/ %G en %F JSFU_2021_14_2_a10
Isakjan M. Khamdamov; Zoya S. Chay. Joint distribution of the number of vertices and the area of convex hulls generated by a uniform distribution in a convex polygon. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 14 (2021) no. 2, pp. 230-241. http://geodesic.mathdoc.fr/item/JSFU_2021_14_2_a10/
[1] C. Buchta, “On the distribution of the number of vertices of a random polygon”, Anz. Osterreich. Akad. Wiss. Math. Natur. K1, 139 (2003), 17–19 | MR | Zbl
[2] C. Buchta, “Exact formulae for variances of functionals of convex hulls”, Advances in Applied Probability, 45:4 (2013), 917–924 | DOI | MR | Zbl
[3] A.J. Cabo, P. Groeneboom, “Limit theorems for functiohals of convex hulls”, Probab. Theory Relat. Fields, 100 (1994), 31–55 | DOI | MR | Zbl
[4] H. Carnal, Die konvexe Hulle von n rotations symmetrisch verteilten Punkten, Z. Wahrscheinlichkeits theorie verw. Geb., 1970, no. 15, 168–176 | DOI | MR | Zbl
[5] B. Efron, “The convex hull of a random set of points”, Biometrika, 52 (1965), 331–343 | DOI | MR | Zbl
[6] Sh.K. Formanov, I.M. Khamdamov, “On joint probability distribution of the number of vertices and area of the convex hulls generated by a Poisson point process”, Statistics and Probability Letters, 169 (2021), 108966, 1–7 | DOI | MR
[7] P. Groeneboom, “Limit theorems for convex hulls”, Probab. Theory Related Fields, 79 (1988), 327–368 | DOI | MR | Zbl
[8] P. Groeneboom, “Convex hulls of uniform samples from a convex polygon”, Adv. Appl. Prob. (SGSA), 44 (2012), 330–342 | DOI | MR | Zbl
[9] T. Hsing, “On the asymptotic distribution of the area outside a random convex hull in a disk”, The Annals of Applied Probability, 4:2 (1994), 478–493 | DOI | MR | Zbl
[10] I.M. Khamdamov, “On Limit Theorem for the Number of Vertices of the Convex Hulls in a Unit Disk”, Journal of Siberian Federal University. Mathematics and Physics, 13:3 (2020), 275–284 | DOI | MR
[11] I.M. Khamdamov, “Properties of convex hull generated by inhomogeneous Poisson point process”, Ufa Mathematical Journal, 12:3 (2020), 81–96 | DOI | MR | Zbl
[12] A.V. Nagaev, “Some properties of convex hulls generated by homogeneous Poisson point processes in an unbounded convex domain”, Ann. Inst. Statist. Math., 47:1 (1995), 21–29 | DOI | MR | Zbl
[13] A.V. Nagaev, I.M. Khamdamov, Limit theorems for functionals of random convex hulls, Preprint, Institute of Mathematics, Academy of Sciences of Uzbekistan, Tashkent, 1991 (in Russian) | Zbl
[14] J. Pardon, “Central limit theorems for random polygons in an arbitrary convex set”, The Annals of Probability, 1:3 (2011), 881–903 | MR
[15] J. Pardon, “Central Limit Theorems for Uniform Model Random Polygons”, J. Theor. Probab., 25 (2012), 823–833 | DOI | MR | Zbl
[16] A. Reny, R. Sulanke, “Uber diekovexe Hulle von zufalling gewahlten Punkte”, Z. Wahrscheinlichkeits theorie verw. Geb., 2 (1963), 75–84 | DOI | MR | Zbl