Solvability of BVPs for the parabolic-hyperbolic equation with non-linear loaded term
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 14 (2021) no. 2, pp. 133-143.

Voir la notice de l'article provenant de la source Math-Net.Ru

This work is devoted to prove the existence and uniqueness of solution of BVP with non-local assumptions on the boundary and integral gluing conditions for the parabolic-hyperbolic type equation involving Caputo derivatives. Using the method of integral energy, the uniqueness of solution have been proved. Existence of solution was proved by the method of integral equations.
Keywords: Caputo fractional derivatives, loaded equation, integral gluing condition, non-linear integral equation, non-local problem, existence and uniqueness of solution.
@article{JSFU_2021_14_2_a0,
     author = {Obidjon Kh. Abdullaev},
     title = {Solvability of {BVPs} for the parabolic-hyperbolic equation with non-linear loaded term},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {133--143},
     publisher = {mathdoc},
     volume = {14},
     number = {2},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2021_14_2_a0/}
}
TY  - JOUR
AU  - Obidjon Kh. Abdullaev
TI  - Solvability of BVPs for the parabolic-hyperbolic equation with non-linear loaded term
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2021
SP  - 133
EP  - 143
VL  - 14
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2021_14_2_a0/
LA  - en
ID  - JSFU_2021_14_2_a0
ER  - 
%0 Journal Article
%A Obidjon Kh. Abdullaev
%T Solvability of BVPs for the parabolic-hyperbolic equation with non-linear loaded term
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2021
%P 133-143
%V 14
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2021_14_2_a0/
%G en
%F JSFU_2021_14_2_a0
Obidjon Kh. Abdullaev. Solvability of BVPs for the parabolic-hyperbolic equation with non-linear loaded term. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 14 (2021) no. 2, pp. 133-143. http://geodesic.mathdoc.fr/item/JSFU_2021_14_2_a0/

[1] A.A. Kilbas, O.A. Repin, “An analog of the Tricomi problem for a mixed type equation with a partial fractional derivative”, Fractional Calculus and Applied Analysis, 13:1 (2010), 69–84 | MR | Zbl

[2] A.S. Berdyshev, E.T. Karimov, N. Akhtayeva, “Boundary Value problems with integral gluing conditions for fractional order mixed type equations”, Hindawi. IJDE, 2011 | MR

[3] B.J. Kadirkulov, “Boundary problems for mixed parabolic-hyperbolic equations with two lines of changing type and fractional derivative”, EJDE, 57 (2014), 1–7 | MR

[4] A.M. Nakhushev, The loaded equations and their applications, Nauka, M., 2012 (in Russian)

[5] A.M. Nakhushev, “The Darboux problem for a certain degenerate second order loaded integral-differential equation”, Differential equations, 12:1 (1976), 103–108 | MR | Zbl

[6] K.B. Sabitov, “Initial-boundary problem for parabolic-hyperbolic equation with loaded summands”, Russian Math. Iz. VUZ, 59:6 (2015), 23–33 | DOI | MR | Zbl

[7] E.P. Melisheva, “Dirichlet problem for loaded equation of Lavrentiev-Bizadze”, Vestnik SamGU. Estestvenno Nauchnaya Ser., 80:6 (2010), 39–47 (in Russian)

[8] O. Kh.Abdullaev, “A non-local problem for a loaded mixed-type equation with a integral operators”, J. Samara State Tech. Univ., Ser. Phys. and Math. Sci., 20:2 (2016), 220–240 (in Russian) | DOI | MR

[9] O. Kh.Abdullaev, K. Sadarangani, “Non-local problems with integral gluing condition for loaded mixed type equations involving the Caputo fractional derivative”, Electronic Journal of Differential Equations (EJDE), 164 (2016), 1–10 | MR

[10] A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, 204, Elsevier Science B. V., Amsterdam, 2006 | MR | Zbl

[11] M.S. Salakhitdinov, E.T. Karimov, “On a nonlocal problem with gluing condition of integral form for parabolic-hyperbolic equation with Caputo operator”, Reports of the Academy of Sciences of the Republic of Uzbekistan. (DAN RUz), 2014, no. 4, 69–79 (in Russian)

[12] A.S. Berdyshev, A. Cabada, E.T. Karimov, “On a non-local boundary problem for a parabolic-hyperbolic equation involving a Riemann-Liouville fractional differential operator”, Nonlinear Anal., Theory Methods Appl., 75:6 (2012), 3268–3273 | DOI | MR | Zbl

[13] K. Sadarangani, K.O. Kh.Abdullaev, “A non-local problem with discontinuous matching condition for loaded mixed type equation involving the Caputo fractional derivative”, Advances in Difference Equations, 2016, AIDE-D-16-00217R3 | DOI | MR

[14] O. Kh.Abdullaev, “Some Problems for the Degenerate Mixed Type Equation Involving Caputo and Atangana-Baleanu Operators Fractional Order”, Progr. Fract. Differ. Appl., 6:2 (2020), 101–114 | DOI

[15] O. Kh.Abdullaev, “About a problem for the degenerate mixed type equation involving Caputo and Erdelyi-Kober operators fractional order”, Ukr. math. jour., 71:6 (2019), 723–738 | DOI | MR | Zbl

[16] A.V. Pskhu, Partial differential equation of fractional order, Nauka, M., 2000 (in Russian) | MR