A note on computation MTs with time in instructions or with tapes of fixed length
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 14 (2021) no. 1, pp. 69-73.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this short note we analyze the computation algorithms modelled by Church–Turing–Post machines with algorithms for computation which use amount of time spent for computation (number of steps) in their own definitions. We notice some difference and illustrate that there are distinctions in behaviour of such algorithms; also we consider working of MTs on tapes of fixed length and observe again noticed difference.
Keywords: computations, universal Church–Turing Machines, time of computation.
@article{JSFU_2021_14_1_a7,
     author = {Vladimir V. Rybakov},
     title = {A note on computation {MTs} with time in instructions or with tapes of fixed length},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {69--73},
     publisher = {mathdoc},
     volume = {14},
     number = {1},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2021_14_1_a7/}
}
TY  - JOUR
AU  - Vladimir V. Rybakov
TI  - A note on computation MTs with time in instructions or with tapes of fixed length
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2021
SP  - 69
EP  - 73
VL  - 14
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2021_14_1_a7/
LA  - en
ID  - JSFU_2021_14_1_a7
ER  - 
%0 Journal Article
%A Vladimir V. Rybakov
%T A note on computation MTs with time in instructions or with tapes of fixed length
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2021
%P 69-73
%V 14
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2021_14_1_a7/
%G en
%F JSFU_2021_14_1_a7
Vladimir V. Rybakov. A note on computation MTs with time in instructions or with tapes of fixed length. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 14 (2021) no. 1, pp. 69-73. http://geodesic.mathdoc.fr/item/JSFU_2021_14_1_a7/

[1] G.S. Boolos, J.P. Burgess, R.C. Jeffrey, Computability and Logic, 4th ed., Cambridge University Press, Cambridge UK, 2002

[2] M. Davis, Engines of Logic: Mathematicians and the origin of the Computer, 1st ed., W. W. Norton and Company, New York, 2000

[3] T. Neary, D. Woods, “Small Weakly Universal Turing Machines”, 17th International Symposium on Fundamentals of Computation Theory, Lecture Notes in Computer Science, 5699, Springer, 2009, 262–273

[4] Y. Rogozhin, “Small Universal Turing Machines”, Theoretical Computer Science, 168:2 (1996), 215–240 | DOI