Numerical modelling of slow motion of a granular medium
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 14 (2021) no. 1, pp. 21-27.

Voir la notice de l'article provenant de la source Math-Net.Ru

The aim of this work is to find approximate analytic solution of the problem of granular medium motion in a convergent channel, to develop computational algorithm based on the finite element method, and to carry out numerical calculations of the problem.
Keywords: variational inequality, materials with different strengths, strains localization.
@article{JSFU_2021_14_1_a2,
     author = {Olga I. Kuzovatova},
     title = {Numerical modelling of slow motion of a granular medium},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {21--27},
     publisher = {mathdoc},
     volume = {14},
     number = {1},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2021_14_1_a2/}
}
TY  - JOUR
AU  - Olga I. Kuzovatova
TI  - Numerical modelling of slow motion of a granular medium
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2021
SP  - 21
EP  - 27
VL  - 14
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2021_14_1_a2/
LA  - en
ID  - JSFU_2021_14_1_a2
ER  - 
%0 Journal Article
%A Olga I. Kuzovatova
%T Numerical modelling of slow motion of a granular medium
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2021
%P 21-27
%V 14
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2021_14_1_a2/
%G en
%F JSFU_2021_14_1_a2
Olga I. Kuzovatova. Numerical modelling of slow motion of a granular medium. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 14 (2021) no. 1, pp. 21-27. http://geodesic.mathdoc.fr/item/JSFU_2021_14_1_a2/

[1] S.V. Lavrikov, A.F. Revuzhenko, “Localized flows of friable material in radial channels”, Soviet Mining Science, 26 (1990), 1–6

[2] A.F. Revuzhenko, S.B. Stazhevskii, E.I. Shemyakin, “Asymmetry of plastic flow in converging axisymmetric channels”, Dokl. Akad. Nauk SSSR, 246:3 (1979), 572–574 (in Russian)

[3] V.P. Myasnikov, V.M. Sadovskii, “Variational principles of the theory of the limiting equilibrium of media with different strengths”, Journal of Applied Mathematics and Mechanics, 68:3 (2004), 437–446

[4] O. Sadovskaya, V. Sadovskii, Mathematical modeling in mechanics of granular materials, Springer, Berlin–Heidelberg, 2012

[5] A.A. Gvozdev, Analysis of bearing capacity of structures by Limit State Method, v. 1, The essence of the method and its foundations, Gosstroyisdat, M., 1949 (in Russian)

[6] D.C. Drucker, W. Prager, “Soil mechanics and plastic analysis or limit design”, Quarterly of Applied Mathematics, 10:2 (1952), 157–165

[7] O.I. Kuzovatova, V.M. Sadovskii, “Modeling of a Deformation Localization in a Medium with Different Strengths”, J. Sib. Fed. Univ. Math. Phys., 1:3 (2008), 272–283 (in Russian)