Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2021_14_1_a12, author = {Durdimurod K. Durdiev and Zhavlon Z. Nuriddinov}, title = {Determination of a multidimensional kernel in some parabolic integro--differential equation}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {117--127}, publisher = {mathdoc}, volume = {14}, number = {1}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JSFU_2021_14_1_a12/} }
TY - JOUR AU - Durdimurod K. Durdiev AU - Zhavlon Z. Nuriddinov TI - Determination of a multidimensional kernel in some parabolic integro--differential equation JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2021 SP - 117 EP - 127 VL - 14 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2021_14_1_a12/ LA - en ID - JSFU_2021_14_1_a12 ER -
%0 Journal Article %A Durdimurod K. Durdiev %A Zhavlon Z. Nuriddinov %T Determination of a multidimensional kernel in some parabolic integro--differential equation %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2021 %P 117-127 %V 14 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2021_14_1_a12/ %G en %F JSFU_2021_14_1_a12
Durdimurod K. Durdiev; Zhavlon Z. Nuriddinov. Determination of a multidimensional kernel in some parabolic integro--differential equation. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 14 (2021) no. 1, pp. 117-127. http://geodesic.mathdoc.fr/item/JSFU_2021_14_1_a12/
[1] A. Lorenzi, E. Sinestrari, “An inverse problem in theory of materials with memory”, Nonlinear Anal. TMA, 12 (1988), 411–423
[2] D.K. Durdiev, “An inverse problem for a three-dimensional wave equation in the medium with memory”, Math. Anal. and Disc. math., NGU, Novosibirsk, 1989, 19–26 (in Russian)
[3] M. Grasselli, “An identification problem for a linear integro-differential equation occurring in heat flow”, Math. Meth. Appl. Sci., 15 (1992), 167–186
[4] D.K. Durdiev, “To the question of correctness of one inverse problem for hyperbolic integro–differential equation”, Siberian Math. J., 33 (1992), 69–77
[5] D.K. Durdiev, “Some multidimensional inverse problems of memory determination in hyperbolic equations”, Zh. Mat. Fiz. Anal. Geom., 3:4 (2007), 411–423
[6] D.K. Durdiev, “A multidimensional inverse problem for an equation with memory”, Siberian Math. J., 35:3 (1994), 514–521
[7] D.K. Durdiev, “Global solvability of an inverse problem for an integro-differential equation of electrodynamics”, Diff. Equ., 44:7 (2008), 893–899
[8] K. Kasemets, J. Janno, “Inverse problems for a parabolic integro-differential equation in convolutional weak form”, Abstract and Applied Analysis, 2013, 297104 | DOI
[9] P. Podio-Guidugli, “A virtual power format for thermomechanics”, Continuum Mech. Thermodyn., 20 (2009), 479–487 | DOI
[10] Zh.Sh. Safarov, D.K. Durdiev, “Inverse Problem for an Integro-Differential Equation of Acoustics”, Diff. Equ., 54:1 (2018), 134–142 | DOI
[11] Zh.D. Totieva, D.K. Durdiev, “The problem of finding the one-dimensional kernel of the thermoviscoelasticity equation”, Math. Notes, 103:1-2 (2018), 118–132 | DOI
[12] D.K. Durdiev, “An identification problem of memory function of a medium and the form of an impulse source”, J. Sib. Fed. Univ. Math. Phys., 2:2 (2009), 127–136
[13] F. Colomno, “A inverse problem for a parabolic integro-differential model in the theory of combustion”, Phys. D, 236 (2007), 81–89
[14] J. Janno, K. Kasemets, “A Positivity principle for parabolic integro-differential equations and inverse problems with final over determination”, Inverse Problems and Imaging, 3:1 (2009), 17–41
[15] D.K. Durdiev, “On the uniqueness of kernel determination in the integro-differential equation of parabolic type”, J. Samara State Tech. Univ., Ser. Phys. Math. Sci., 19:4 (2015), 658–666 (in Russian) | DOI
[16] D.K. Durdiev, Zh.Zh.Zhumaev, “Problem of determining a multidimensional thermal memory in a heat conductivity equation”, Methods of Funct. Anal. Topology, 25:3 (2019), 219–226
[17] D.K. Durdiev, A. Sh.Rashidov, “Inverse problem of determining the kernel in an integro-differential equation of parabolic type”, Differ. Equ., 50:1 (2014), 110–116 | DOI
[18] K. Karuppiah, J.K. Kim, K. Balachandran, “Parameter identification of an integro-differential equation”, Nonlinear Functional Analysis and Applications, 20:2 (2015), 169–185
[19] A. Hazanee, D. Lesnic, M.I. Ismailov, N.B. Kerimov, “Inverse time-dependent source problems for the heat equation with nonlocal boundary conditions”, Applied Mathematics and Computation, 346 (2019), 800–815
[20] A. Hazanee, D. Lesnic, M.I. Ismailov, N.B. Kerimov, “An inverse time-dependent source problems for the heat equation with a non-classical boundary condition”, Applied Mathematics Modelling, 39:4 (2015), 6258–6276
[21] M.J. Huntul, D. Lesnic, M.S. Hussein, “Reconstruction of time-dependent coefficients from heat moments”, Communications in Nonlinear Science and Numerical Simulation, 33 (2016), 194–217
[22] M.S. Hussein, D. Lesnic, “Simultaneous determination of time and space dependent coefficients in a parabolic equation”, Applied Mathematics and Computation, 301 (2017), 233–253
[23] M.I. Ivanchov, N.V. Saldina, “Inverse problem for a parabolic equation with strong power degeneration”, Ukrainian Mathematical Journal, 58:11 (2006), 1685–1703
[24] A. Ladyzhenskaya, V.A. Solonnikov, N.N. Uraltseva, Linear and quasilinear equations of parabolic type, American Mathematical Society, Providence, Rhode Island, 1968
[25] A.A. Kilbas, Integral equations: course of lectures, BSU, Minsk, 2005 (in Russian)
[26] A.N. Kolmogorov, S.V. Fomin, Elements of function theory and functional analysis, Nauka, M., 1972 (in Russian)
[27] V.P. Mikhaylov, Differential equations with partial derivatives, Nauka, M., 1983 (in Russian)