Influence of uniaxial pressure on the characteristics of lamb and $SH$-wave propagation in $\mathrm{LiNbO}_3$ crystalline plates
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 14 (2021) no. 1, pp. 105-116.

Voir la notice de l'article provenant de la source Math-Net.Ru

Theoretical study of uniaxial pressure influence on the propagation characteristics of Lamb and $SH$-waves in lithium niobate plate is carried out. Electromechanical coupling coefficients and controlling coefficients of the pressure influence on phase velocity are calculated in various directions. Transformation and hybridization of acoustic modes upon a pressure influence have been derived in details.
Keywords: piezoelectric plate, Lamb wave, $SH$-wave, uniform pressure influence, computer simulation.
@article{JSFU_2021_14_1_a11,
     author = {Sergey I. Burkov and Oleg N. Pletnev and Pavel P. Turchin and Olga P. Zolotova and Boris P. Sorokin},
     title = {Influence of uniaxial pressure on the characteristics of lamb and $SH$-wave propagation in $\mathrm{LiNbO}_3$ crystalline plates},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {105--116},
     publisher = {mathdoc},
     volume = {14},
     number = {1},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2021_14_1_a11/}
}
TY  - JOUR
AU  - Sergey I. Burkov
AU  - Oleg N. Pletnev
AU  - Pavel P. Turchin
AU  - Olga P. Zolotova
AU  - Boris P. Sorokin
TI  - Influence of uniaxial pressure on the characteristics of lamb and $SH$-wave propagation in $\mathrm{LiNbO}_3$ crystalline plates
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2021
SP  - 105
EP  - 116
VL  - 14
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2021_14_1_a11/
LA  - en
ID  - JSFU_2021_14_1_a11
ER  - 
%0 Journal Article
%A Sergey I. Burkov
%A Oleg N. Pletnev
%A Pavel P. Turchin
%A Olga P. Zolotova
%A Boris P. Sorokin
%T Influence of uniaxial pressure on the characteristics of lamb and $SH$-wave propagation in $\mathrm{LiNbO}_3$ crystalline plates
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2021
%P 105-116
%V 14
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2021_14_1_a11/
%G en
%F JSFU_2021_14_1_a11
Sergey I. Burkov; Oleg N. Pletnev; Pavel P. Turchin; Olga P. Zolotova; Boris P. Sorokin. Influence of uniaxial pressure on the characteristics of lamb and $SH$-wave propagation in $\mathrm{LiNbO}_3$ crystalline plates. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 14 (2021) no. 1, pp. 105-116. http://geodesic.mathdoc.fr/item/JSFU_2021_14_1_a11/

[1] I.A. Viktorov, Rayleigh and Lamb waves: physical theory and applications, Plenum Press, New York, 1967

[2] G.W. Farnell, “Properties of elastic surface waves”, Physical Acoustics – Principles and Methods, eds. W.P. Mason, R.N. Thurston, Academic Press, New York–London, 1970, 109–166

[3] K. Toda, K. Mizutani, “A Lamb wave voltage sensor”, J. Acoust. Soc. Am., 74 (1983), 677–679

[4] A. Palma, L. Palmieri, G. Socino, E. Verona, “Lamb wave electroacoustic voltage sensor”, J. Appl. Phys., 58 (1985), 3265–3267

[5] H. Liu, T.J. Wang, Z.K. Wang, Z.B. Kuang, “Effect of a biasing electric field on the propagation of antisymmetric Lamb waves in piezoelectric plates”, Int. J. Solids Struct., 39 (2002), 1777–1790

[6] H. Liu, T.J. Wang, Z.K. Wang, Z.B. Kuang, “Effect of a biasing electric field on the propagation of symmetric Lamb waves in piezoelectric plates”, Int. J. Solids Struct., 39 (2002), 2031–2049

[7] S.G. Joshi, B.D. Zaitsev, I.E. Kuznetsova, “SH acoustic waves in a lithium niobate plate and the effect of electrical boundary conditions on their properties”, Acoust. Phys., 47 (2001), 282–285

[8] B.D. Zaitsev, I.E. Kuznetsova, S.G. Joshi, “Theoretical and experimental investigation of QSH (quasi shear horizontal) acoustic waves”, Ultrasonics, 36 (1998), 31–35

[9] B.D. Zaitsev, I.E. Kuznetsova, “Electric field influence on acoustic waves”, Handbook of Advanced Electronic and Photonic Materials and Devices, ed. H.S. Nalwa, 2001, 139–174 | DOI

[10] B.D. Zaitsev, S.G. Joshi, I.E. Kuznetsova, “Electric-field influence on Lamb and SH wave properties in LiNbO$_3$ plates”, J. Acoust. Soc. Am., 103 (1998), 2883

[11] B.D. Zaitsev, V. Yu.Kalinin, I.E. Kuznetsova, “Nonlinear electroacoustic interaction for elastic waves in lithium niobate plates”, Acoust. Phys., 45 (1999), 196–201

[12] H. Zhang, J.A. Turner, J. Yang, J.A. Kosinski, “Electroelastic effect of thickness mode langasite resonators”, IEEE TUFFC, 54 (2007), 2120–2128

[13] S.I. Burkov, B.P. Sorokin, K.S. Aleksandrov, A.A. Karpovich, “Reflection and refraction of bulk acoustic waves in piezoelectrics under uniaxial stress”, Acoust. Phys., 55 (2009), 178–185

[14] S.I. Burkov, B.P. Sorokin, A.A. Karpovich, K.S. Aleksandrov, “Reflection and refraction of bulk acoustic waves in piezoelectric crystals under the action of bias electric field and uniaxial pressure”, Proc. Ultras. Symp., IEEE, 2008, 2161–2164

[15] S.I. Burkov, O. P. Zolotova, B.P. Sorokin, K.S. Aleksandrov, “Effect of external electrical field on characteristics of a Lamb wave in a piezoelectric plate”, Acoust. Phys., 56 (2010), 644–650

[16] S.I. Burkov, O.P. Zolotova, B.P. Sorokin, “Influence of the external electric field on propagation of the lamb waves in the piezoelectric plates”, IEEE TUFFC, 58 (2011), 239–243

[17] F. Kubat, W. Ruile, T. Hesjedal, J. Stotz, U. Rosler, L.M. Reindl, “Calculation and experimental verification of the acoustic stress at GHz frequencies in SAW resonators”, IEEE TUFFC, 51 (2004), 1437–1448

[18] Y. Jing, J. Chen, X. Gong, J. Duan, “Stress-induced frequency shifts in rotated Y-cut langasite resonators with electrodes considered”, IEEE TUFFC, 54 (2007), 906–909

[19] J.A. Kosinski, Jr. R.A. Pastore, J. Yang, X. Yang, J.A. Turner, “Stress-induced frequency shifts of degenerate thickness-shear modes in rotated Y-cut quartz resonators”, IEEE TUFFC, 57 (2010), 1880–1883

[20] J.A. Kosinski, Jr. R.A. Pastore, X. Yang, J. Yang, J.A. Turner, “Stress-induced frequency shifts in langasite thickness-mode resonators”, IEEE TUFFC, 56 (2009), 129–135

[21] H. Liu, Z.K. Wang, T.J. Wang, “Effect of initial stress on the propagation behavior of Love waves in a layered piezoelectric structure”, Int. J. Solids Struct., 38 (2001), 37–51

[22] Z. Qian, F. Jin, Z. Wang, K. Kishimoto, “Love waves propagation in a piezoelectric layered structure with initial stresses”, Acta Mech., 171 (2004), 41–57

[23] K.S. Aleksandrov, B.P. Sorokin, S.I. Burkov, Effective piezoelectric crystals for acoustoelectronics, piezotechnics and sensors, v. 2, SB RAS Publishing House, Novosibirsk, 2008 (in Russian)

[24] S.I. Burkov, O.P. Zolotova, B.P. Sorokin, P.P. Turchin, “The analysis of the effect of homogeneous mechanical stress on the acoustic wave propagation in the "La$_3$Ga$_5$SiO$_{14}$/fused silica" piezoelectric layered structure”, Ultrasonics, 55 (2015), 104–112

[25] Y. Cho, K. Yamanouchi, “Nonlinear, elastic, piezoelectric, electrostrictive, and dielectric constants of lithium niobate”, J. Appl. Phys., 61 (1987), 875–887

[26] I.E. Kuznetsova, B.D. Zaitsev, S.G. Joshi, I.A. Borodina, “Investigation of acoustic waves in thin plates of lithium niobate and lithium tantalate”, IEEE TUFFC, 48 (2001), 322–328

[27] I.E. Kuznetsova, B.D. Zaitsev, A.A. Teplykh, I.A. Borodina, “Hybridization of acoustic waves in piezoelectric plates”, Acoust. Phys., 53 (2007), 64–69

[28] I.E. Kuznetsova, B.D. Zaitsev, I.A. Borodina, A.A. Teplykh, V.V. Shurygin, S.G. Joshi, “Investigation of acoustic waves of higher order propagating in plates of lithium niobate”, Ultrasonics, 42 (2004), 179–182