Filtration of liquid in a non-isothermal viscous porous medium
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 13 (2020) no. 6, pp. 763-773.

Voir la notice de l'article provenant de la source Math-Net.Ru

The solvability of the initial-boundary value problem is proved for the system of equations of one-dimensional unsteady fluid motion in a heat-conducting viscous porous medium.
Keywords: Darcy's law, poroelasticity, solvability, thermal conductivity.
Mots-clés : filtration
@article{JSFU_2020_13_6_a9,
     author = {Alexander A. Papin and Margarita A. Tokareva and Rudolf A. Virts},
     title = {Filtration of liquid in a non-isothermal viscous porous medium},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {763--773},
     publisher = {mathdoc},
     volume = {13},
     number = {6},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2020_13_6_a9/}
}
TY  - JOUR
AU  - Alexander A. Papin
AU  - Margarita A. Tokareva
AU  - Rudolf A. Virts
TI  - Filtration of liquid in a non-isothermal viscous porous medium
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2020
SP  - 763
EP  - 773
VL  - 13
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2020_13_6_a9/
LA  - en
ID  - JSFU_2020_13_6_a9
ER  - 
%0 Journal Article
%A Alexander A. Papin
%A Margarita A. Tokareva
%A Rudolf A. Virts
%T Filtration of liquid in a non-isothermal viscous porous medium
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2020
%P 763-773
%V 13
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2020_13_6_a9/
%G en
%F JSFU_2020_13_6_a9
Alexander A. Papin; Margarita A. Tokareva; Rudolf A. Virts. Filtration of liquid in a non-isothermal viscous porous medium. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 13 (2020) no. 6, pp. 763-773. http://geodesic.mathdoc.fr/item/JSFU_2020_13_6_a9/

[1] J.A.D. Connoly, Y.Y. Podladchikov, “Compaction-driven fluid flow in viscoelastic rock”, Geodinamica Acta, 11:2–3 (1998), 55–84 | DOI

[2] A. Fowler, Mathematical Geoscience, Springer-Verlag London Limited, 2011 | MR | Zbl

[3] J.A.D. Connolly, Y.Y. Podladchikov, “Temperature-dependent viscoelastic compaction and compartmentalization in sedimentary basins”, Tectonophysics, 324:3 (2000), 137–168 | DOI

[4] R.E. Grimm, S.C. Solomon, “Viscous relaxation of impact crater relief on Venus: Constraints on crustal thickness and thermal gradient”, Journal of Geophysical Research: Solid Earth, 93:B10 (1988), 11911–11929 | DOI

[5] A.A. Papin, M.A. Tokareva, “On Local solvability of the system of the equation of onedimensional motion of magma”, Journal of Siberian Federal University. Mathematics and Physics, 10:3 (2017), 385–395 | DOI | MR

[6] M.N. Koleva, L.G. Vulkov, “Numerical analysis of one dimensional motion of magma without mass forces”, Journal of Computational and Applied Mathematics, 366 (2020), 112338 | DOI | MR | Zbl

[7] M.A. Tokareva, A.A. Papin, “Global solvability of a system of equations of one-dimensional motion of a viscous fluid in a deformable viscous porous medium”, Journal of Applied and Industrial Mathematics, 13:2 (2019), 350–362 | DOI | MR | Zbl

[8] M. Simpson, M. Spiegelman, M.I. Weinstein, “Degenerate dispersive equations arising in the stady of magma dynamics”, Nonlinearity, 20:1 (2007), 21–49 | DOI | MR | Zbl

[9] V.Y. Rudyak, O.B. Bocharov, A.V. Seryakov, “Hierarchical sequence of models and deformation peculiarities of porous media saturated with fluids”, Proceedings of the XLI Summer School-Conference Advanced Problems in Mechanics, APM-2013, 2013, 184–191

[10] O.B. Bocharov, V.Y. Rudyak, A.V. Seryakov, “Simplest deformation models of a fluid-saturated poroelastic medium”, Journal of Mining Science, 50 (2014), 235–248 | DOI

[11] A.M. Abourabia, K.M. Hassan, A.M. Morad, “Analytical solutions of the magma equations for molten rocks in a granular matrix”, Chaos, Solitons and Fractals, 42:2 (2009), 1170–1180 | DOI | MR | Zbl

[12] Y. Geng, L. Zhang, “Bifurcations of traveling wave solutions for the magma equation”, Applied Mathematics and computation, 217:4 (2010), 1741–1748 | DOI | MR | Zbl

[13] I.G. Akhmerova, A.A. Papin, “Solvability of the boundary-value problem for equations of one-dimensional motion of a two-phase mixture”, Mathematical Notes, 96:2 (2014), 166–179 | DOI | MR | Zbl

[14] C. Morency et al., “A numerical model for coupled fluid flow and matrix deformation with applications to disequilibrium compaction and delta stability”, Journal of Geophysical Research: Solid Earth, 112:B10 (2007)

[15] A.S. Saad, B. Saad, M. Saad, “Numerical study of compositional compressible degenerate twophase flow in saturated-unsaturated heterogeneous porous media”, Comput. Math. Appl., 71:2 (2016), 565–584 | DOI | MR | Zbl

[16] S.N. Antontsev, A.V. Kazhikhov, V.N. Monakhov, Boundary value problems of the mechanics of inhomogeneous fluids, Nauka. Sib. branch, 1983 (in Russian) | MR | Zbl

[17] A.A. Papin, I.G. Akhmerova, “Solvability of the system of equations of one-dimensional motion of a heat-conducting two-phase mixture”, Mathematical Notes, 87:2 (2010), 230–243 | DOI | MR | Zbl

[18] P.I. Lizorkin, A course of differential and integral equations with additional chapters of analysis, Nauka, 1981 (in Russian) | MR

[19] O.A. Ladyzhenskaya, V.A. Solonnikov, N. N. Ural'tseva, Linear and Quasilinear Equations of Parabolic Type, Nauka, M., 1967 (in Russian) | MR | Zbl