Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2020_13_6_a8, author = {Hovik A. Matevossian}, title = {Mixed biharmonic {Dirichlet--Neumann} problem in exterior domains}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {755--762}, publisher = {mathdoc}, volume = {13}, number = {6}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JSFU_2020_13_6_a8/} }
TY - JOUR AU - Hovik A. Matevossian TI - Mixed biharmonic Dirichlet--Neumann problem in exterior domains JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2020 SP - 755 EP - 762 VL - 13 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2020_13_6_a8/ LA - en ID - JSFU_2020_13_6_a8 ER -
Hovik A. Matevossian. Mixed biharmonic Dirichlet--Neumann problem in exterior domains. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 13 (2020) no. 6, pp. 755-762. http://geodesic.mathdoc.fr/item/JSFU_2020_13_6_a8/
[1] F. Brock, “An isoperimetric inequality for eigenvalues of the Stekloff problem”, Z. Angew. Math. Mech. (ZAMM), 81:1 (2001), 69–71 | 3.0.CO;2-# class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl
[2] R. Farwig, “A note on the reflection principle for the biharmonic equation and the Stokes system”, Acta Appl. Math., 34 (1994), 41–51 | DOI | MR
[3] F. Gazzola, H.-Ch.Grunau, G. Sweers, Polyharmonic Boundary Value Problems: Positivity Preserving and Nonlinear Higher Order Elliptic Equations in Bounded Domains, Lecture Notes Math., 1991, Springer-Verlag, 2010 | DOI | MR | Zbl
[4] D. Gilbarg, N. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin, 1977 | MR | Zbl
[5] V.A. Kondratiev, O.A. Oleinik, “On the behavior at infinity of solutions of elliptic systems with a finite energy integral”, Arch. Rational Mech. Anal., 99:1 (1987), 75–99 | DOI | MR | Zbl
[6] V.A. Kondratiev, O.A. Oleinik, “Boundary value problems for the system of elasticity theory in unbounded domains. Korn's inequalities”, Russian Math. Surveys, 43:5 (1988), 65–119 | DOI | MR | Zbl
[7] V.A. Kondratiev, O.A. Oleinik, “Hardy's and Korn's Inequality and their Application”, Rend. Mat. Appl., Serie VII, 10:3 (1990), 641–666 | MR | Zbl
[8] A.A. Kon'kov, “On the dimension of the solution space of elliptic systems in unbounded domains”, Russian Acad. Sci. Sbornik Math., 80:2 (1995), 411–434 | DOI | MR
[9] J.R. Kuttler, V.G. Sigillito, “Inequalities for membrane and Stekloff eigenvalues”, J. Math. Anal. Appl., 23:1 (1968), 148–160 | DOI | MR | Zbl
[10] O.A. Matevosyan, “On solutions of boundary value problems for a system in the theory of elasticity and for the biharmonic equation in a half–space”, Diff. Equations, 34:6 (1998), 803–808 | MR | Zbl
[11] O.A. Matevosyan, “The exterior Dirichlet problem for the biharmonic equation: Solutions with bounded Dirichlet integral”, Math. Notes, 70:3 (2001), 363–377 | DOI | MR | Zbl
[12] O.A. Matevosyan, “Solutions of exterior boundary value problems for the elasticity system in weighted spaces”, Sbornik Math., 192:12 (2001), 1763–1798 | DOI | MR
[13] O.A. Matevosyan, “On solutions of mixed boundary-value problems for the elasticity system in unbounded domains”, Izvestiya Math., 67:5 (2003), 895–929 | DOI | MR | Zbl
[14] O.A. Matevosyan, “On solutions of the Dirichlet problem for the polyharmonic equation in unbounded domains”, P-Adic Numbers, Ultrametric Analysis, and Appl., 7:1 (2015), 74–78 | DOI | MR
[15] O.A. Matevosyan, “Solution of a mixed boundary value problem for the biharmonic equation with finite weighted Dirichlet integral”, Diff. Equations, 51:4 (2015), 487–501 | DOI | MR | Zbl
[16] O.A. Matevosyan, “On solutions of the Neumann problem for the biharmonic equation in unbounded domains”, Math. Notes, 98 (2015), 990–994 | DOI | MR
[17] O.A. Matevosyan, “On solutions of the mixed Dirichlet–Navier problem for the polyharmonic equation in exterior domains”, Russ. J. Math. Phys., 23:1 (2016), 135–138 | DOI | MR | Zbl
[18] O.A. Matevosyan, “On solutions of one boundary value problem for the biharmonic equation”, Diff. Equations, 52:10 (2016), 1379–1383 | DOI | MR | Zbl
[19] H.A. Matevossian, “On the biharmonic Steklov problem in weighted spaces”, Russ. J. Math. Phys., 24:1 (2017), 134–138 | DOI | MR | Zbl
[20] H.A. Matevossian, “On solutions of the mixed Dirichlet–Steklov problem for the biharmonic equation in exterior domains”, P-Adic Numbers, Ultrametric Analysis, and Appl., 9:2 (2017), 151–157 | DOI | MR | Zbl
[21] H.A. Matevossian, “On the Steklov–type biharmonic problem in unbounded domains”, Russ. J. Math. Phys., 25:2 (2018), 271–276 | DOI | MR | Zbl
[22] O.A. Matevossian, “Mixed Dirichlet–Steklov problem for the biharmonic equation in weighted spaces”, J. Math. Sci. (N. Y.), 234:4 (2018), 440–454 | DOI | MR | Zbl
[23] H.A. Matevossian, “On the polyharmonic Neumann problem in weighted spaces”, Complex Variables and Elliptic Equations, 64:1 (2019), 1–7 | DOI | MR | Zbl
[24] S.G. Mikhlin, Linear Partial Differential Equations, Vyssaya Shkola, M., 1977 (in Russian) | MR
[25] L.E. Payne, “Some isoperimetric inequalities for harmonic functions”, SIAM J. Math. Anal., 1:3 (1970), 354–359 | DOI | MR | Zbl
[26] S.L. Sobolev, Applications of Functional Analysis in Mathematical Physics, Amer. Math. Soc., Providence, 1991 | MR | Zbl
[27] W. Stekloff, “Sur les problemes fondamentaux de la physique mathematique”, Ann. Sci. de l'E.N.S., $3^e$ serie, 19 (1902), 191–259 ; 455–490 | MR | Zbl | MR