Mixed biharmonic Dirichlet--Neumann problem in exterior domains
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 13 (2020) no. 6, pp. 755-762

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the unique solvability of the mixed Dirichlet–Neumann problem for the biharmonic equation in the exterior of a compact set under the assumption that solutions of this problem have bounded Dirichlet integrals with the weight $|x|^a$. Depending on the value of the parameter $a$, we obtained uniqueness (non-uniqueness) theorems of the problem and present exact formulas for the dimension of the space of solutions of the mixed Dirichlet–Neumann problem.
Keywords: biharmonic operator, Dirichlet–Neumann problem, weighted Dirichlet integral.
@article{JSFU_2020_13_6_a8,
     author = {Hovik A. Matevossian},
     title = {Mixed biharmonic {Dirichlet--Neumann} problem in exterior domains},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {755--762},
     publisher = {mathdoc},
     volume = {13},
     number = {6},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2020_13_6_a8/}
}
TY  - JOUR
AU  - Hovik A. Matevossian
TI  - Mixed biharmonic Dirichlet--Neumann problem in exterior domains
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2020
SP  - 755
EP  - 762
VL  - 13
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2020_13_6_a8/
LA  - en
ID  - JSFU_2020_13_6_a8
ER  - 
%0 Journal Article
%A Hovik A. Matevossian
%T Mixed biharmonic Dirichlet--Neumann problem in exterior domains
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2020
%P 755-762
%V 13
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2020_13_6_a8/
%G en
%F JSFU_2020_13_6_a8
Hovik A. Matevossian. Mixed biharmonic Dirichlet--Neumann problem in exterior domains. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 13 (2020) no. 6, pp. 755-762. http://geodesic.mathdoc.fr/item/JSFU_2020_13_6_a8/