Mixed biharmonic Dirichlet--Neumann problem in exterior domains
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 13 (2020) no. 6, pp. 755-762
Voir la notice de l'article provenant de la source Math-Net.Ru
We study the unique solvability of the mixed Dirichlet–Neumann problem for the biharmonic equation in the exterior of a compact set under the assumption that solutions of this problem have bounded Dirichlet integrals with the weight $|x|^a$. Depending on the value of the parameter $a$, we obtained uniqueness (non-uniqueness) theorems of the problem and present exact formulas for the dimension of the space of solutions of the mixed Dirichlet–Neumann problem.
Keywords:
biharmonic operator, Dirichlet–Neumann problem, weighted Dirichlet integral.
@article{JSFU_2020_13_6_a8,
author = {Hovik A. Matevossian},
title = {Mixed biharmonic {Dirichlet--Neumann} problem in exterior domains},
journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
pages = {755--762},
publisher = {mathdoc},
volume = {13},
number = {6},
year = {2020},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JSFU_2020_13_6_a8/}
}
TY - JOUR AU - Hovik A. Matevossian TI - Mixed biharmonic Dirichlet--Neumann problem in exterior domains JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2020 SP - 755 EP - 762 VL - 13 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2020_13_6_a8/ LA - en ID - JSFU_2020_13_6_a8 ER -
Hovik A. Matevossian. Mixed biharmonic Dirichlet--Neumann problem in exterior domains. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 13 (2020) no. 6, pp. 755-762. http://geodesic.mathdoc.fr/item/JSFU_2020_13_6_a8/