Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2020_13_6_a5, author = {Vitaly A. Krasikov}, title = {Upper bounds for the analytic complexity of {Puiseux} polynomial solutions to bivariate hypergeometric systems}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {718--732}, publisher = {mathdoc}, volume = {13}, number = {6}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JSFU_2020_13_6_a5/} }
TY - JOUR AU - Vitaly A. Krasikov TI - Upper bounds for the analytic complexity of Puiseux polynomial solutions to bivariate hypergeometric systems JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2020 SP - 718 EP - 732 VL - 13 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2020_13_6_a5/ LA - en ID - JSFU_2020_13_6_a5 ER -
%0 Journal Article %A Vitaly A. Krasikov %T Upper bounds for the analytic complexity of Puiseux polynomial solutions to bivariate hypergeometric systems %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2020 %P 718-732 %V 13 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2020_13_6_a5/ %G en %F JSFU_2020_13_6_a5
Vitaly A. Krasikov. Upper bounds for the analytic complexity of Puiseux polynomial solutions to bivariate hypergeometric systems. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 13 (2020) no. 6, pp. 718-732. http://geodesic.mathdoc.fr/item/JSFU_2020_13_6_a5/
[1] V.I. Arnold, “On the representation of continuous functions of three variables by superpositions of continuous functions of two variables”, Sbornik Mathematics, 48:1 (1959), 3–74 | MR | Zbl
[2] V.K. Beloshapka, “Analytic complexity of functions of two variables”, Russian J. Math. Phys., 14:3 (2007), 243–249 | DOI | MR | Zbl
[3] V.K. Beloshapka, “Analytical complexity: Development of the topic”, Russian J. Math. Phys., 19:4 (2012), 428–439 | DOI | MR | Zbl
[4] V.K. Beloshapka, “On the complexity of differential algebraic definition for classes of analytic complexity”, Math. Notes, 105:3 (2019), 323–331 | MR | Zbl
[5] A. Dickenstein, L.F. Matusevich, T.M. Sadykov, “Bivariate hypergeometric D-Modules”, Advances in Mathematics, 196 (2005), 78–123 | DOI | MR | Zbl
[6] A. Dickenstein, T.M. Sadykov, “Algebraicity of solutions to the Mellin system and its monodromy”, Dokl. Math., 75:1 (2007), 80–82 | DOI | MR | Zbl
[7] A. Dickenstein, T.M. Sadykov, “Bases in the solution space of the Mellin system”, Sbornik Mathematics, 198:9 (2007), 1277–1298 | DOI | MR | Zbl
[8] J. Horn, “Über die Konvergenz der hypergeometrischen Reihen zweier und dreier Veränderlichen”, Math. Ann., 34 (1889), 544–600 | DOI | MR
[9] V.A. Krasikov, “Analytic complexity of hypergeometric functions satisfying systems with holonomic rank two”, Lecture Notes in Computer Science, 11661, 2019, 330–342 | DOI | MR | Zbl
[10] T.M. Sadykov, S. Tanabe, “Maximally reducible monodromy of bivariate hypergeometric systems”, Izv. Math., 80:1 (2016), 221–262 | DOI | MR | Zbl
[11] T.M. Sadykov, “Beyond the first class of analytic complexity”, Lecture Notes in Computer Science, 11077, 2018, 335–344 | DOI | MR | Zbl
[12] T.M. Sadykov, “Computational problems of multivariate hypergeometric theory”, Programming and Computer Software, 44:2 (2018), 131–137 | DOI | MR
[13] T.M. Sadykov, “The Hadamard product of hypergeometric series”, Bulletin des Sciences Mathematiques, 126:1 (2002), 31 | DOI | MR | Zbl
[14] T.M. Sadykov, “On the analytic complexity of hypergeometric functions”, Proceedings of the Steklov Institute of Mathematics, 298:1 (2017), 248–255 | DOI | MR | Zbl
[15] M.A. Stepanova, “Analytic complexity of differential algebraic functions”, Sbornik Mathematics, 210:12 (2019), 1774–1787 | DOI | MR | Zbl
[16] M.A. Stepanova, “On analytical complexity of antiderivatives”, Journal of Siberian Federal University. Mathematics $\$ Physics, 12:6 (2019), 694–698 | DOI | MR
[17] A.G. Vitushkin, “On Hilbert's thirteenth problem and related questions”, Russian Math. Surveys, 59:1 (2004), 11–25 | DOI | MR