Upper bounds for the analytic complexity of Puiseux polynomial solutions to bivariate hypergeometric systems
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 13 (2020) no. 6, pp. 718-732.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper deals with the analytic complexity of solutions to bivariate holonomic hypergeometric systems of the Horn type. We obtain estimates on the analytic complexity of Puiseux polynomial solutions to the hypergeometric systems defined by zonotopes. We also propose algorithms of the analytic complexity estimation for polynomials.
Keywords: hypergeometric systems of partial differential equations, holonomic rank, analytic complexity, differential polynomial, hypergeometry package.
Mots-clés : polynomial solutions, zonotopes
@article{JSFU_2020_13_6_a5,
     author = {Vitaly A. Krasikov},
     title = {Upper bounds for the analytic complexity of {Puiseux} polynomial solutions to bivariate hypergeometric systems},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {718--732},
     publisher = {mathdoc},
     volume = {13},
     number = {6},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2020_13_6_a5/}
}
TY  - JOUR
AU  - Vitaly A. Krasikov
TI  - Upper bounds for the analytic complexity of Puiseux polynomial solutions to bivariate hypergeometric systems
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2020
SP  - 718
EP  - 732
VL  - 13
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2020_13_6_a5/
LA  - en
ID  - JSFU_2020_13_6_a5
ER  - 
%0 Journal Article
%A Vitaly A. Krasikov
%T Upper bounds for the analytic complexity of Puiseux polynomial solutions to bivariate hypergeometric systems
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2020
%P 718-732
%V 13
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2020_13_6_a5/
%G en
%F JSFU_2020_13_6_a5
Vitaly A. Krasikov. Upper bounds for the analytic complexity of Puiseux polynomial solutions to bivariate hypergeometric systems. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 13 (2020) no. 6, pp. 718-732. http://geodesic.mathdoc.fr/item/JSFU_2020_13_6_a5/

[1] V.I. Arnold, “On the representation of continuous functions of three variables by superpositions of continuous functions of two variables”, Sbornik Mathematics, 48:1 (1959), 3–74 | MR | Zbl

[2] V.K. Beloshapka, “Analytic complexity of functions of two variables”, Russian J. Math. Phys., 14:3 (2007), 243–249 | DOI | MR | Zbl

[3] V.K. Beloshapka, “Analytical complexity: Development of the topic”, Russian J. Math. Phys., 19:4 (2012), 428–439 | DOI | MR | Zbl

[4] V.K. Beloshapka, “On the complexity of differential algebraic definition for classes of analytic complexity”, Math. Notes, 105:3 (2019), 323–331 | MR | Zbl

[5] A. Dickenstein, L.F. Matusevich, T.M. Sadykov, “Bivariate hypergeometric D-Modules”, Advances in Mathematics, 196 (2005), 78–123 | DOI | MR | Zbl

[6] A. Dickenstein, T.M. Sadykov, “Algebraicity of solutions to the Mellin system and its monodromy”, Dokl. Math., 75:1 (2007), 80–82 | DOI | MR | Zbl

[7] A. Dickenstein, T.M. Sadykov, “Bases in the solution space of the Mellin system”, Sbornik Mathematics, 198:9 (2007), 1277–1298 | DOI | MR | Zbl

[8] J. Horn, “Über die Konvergenz der hypergeometrischen Reihen zweier und dreier Veränderlichen”, Math. Ann., 34 (1889), 544–600 | DOI | MR

[9] V.A. Krasikov, “Analytic complexity of hypergeometric functions satisfying systems with holonomic rank two”, Lecture Notes in Computer Science, 11661, 2019, 330–342 | DOI | MR | Zbl

[10] T.M. Sadykov, S. Tanabe, “Maximally reducible monodromy of bivariate hypergeometric systems”, Izv. Math., 80:1 (2016), 221–262 | DOI | MR | Zbl

[11] T.M. Sadykov, “Beyond the first class of analytic complexity”, Lecture Notes in Computer Science, 11077, 2018, 335–344 | DOI | MR | Zbl

[12] T.M. Sadykov, “Computational problems of multivariate hypergeometric theory”, Programming and Computer Software, 44:2 (2018), 131–137 | DOI | MR

[13] T.M. Sadykov, “The Hadamard product of hypergeometric series”, Bulletin des Sciences Mathematiques, 126:1 (2002), 31 | DOI | MR | Zbl

[14] T.M. Sadykov, “On the analytic complexity of hypergeometric functions”, Proceedings of the Steklov Institute of Mathematics, 298:1 (2017), 248–255 | DOI | MR | Zbl

[15] M.A. Stepanova, “Analytic complexity of differential algebraic functions”, Sbornik Mathematics, 210:12 (2019), 1774–1787 | DOI | MR | Zbl

[16] M.A. Stepanova, “On analytical complexity of antiderivatives”, Journal of Siberian Federal University. Mathematics $\$ Physics, 12:6 (2019), 694–698 | DOI | MR

[17] A.G. Vitushkin, “On Hilbert's thirteenth problem and related questions”, Russian Math. Surveys, 59:1 (2004), 11–25 | DOI | MR