New classes of solutions of dynamical problems of plasticity
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 13 (2020) no. 6, pp. 792-796.

Voir la notice de l'article provenant de la source Math-Net.Ru

Dynamical problems of the theory of plasticity have not been adequately studied. Dynamical problems arise in various fields of science and engineering but the complexity of original differential equations does not allow one to construct new exact solutions and to solve boundary value problems correctly. One-dimensional dynamical problems are studied rather well but two-dimensional problems cause major difficulties associated with nonlinearity of the main equations. Application of symmetries to the equations of plasticity allow one to construct some exact solutions. The best known exact solution is the solution obtained by B. D. Annin. It describes non-steady compression of a plastic layer by two rigid plates. This solution is a linear one in spatial variables but includes various functions of time. Symmetries are also considered in this paper. These symmetries allow transforming exact solutions of steady equations into solutions of non-steady equations. The obtained solution contains 5 arbitrary functions.
Keywords: differential equation, plasticity, dynamical problem, symmetries.
Mots-clés : exact solution
@article{JSFU_2020_13_6_a12,
     author = {Sergei I. Senashov and Olga V. Gomonova and Irina L. Savostyanova and Olga N. Cherepanova},
     title = {New classes of solutions of dynamical problems of plasticity},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {792--796},
     publisher = {mathdoc},
     volume = {13},
     number = {6},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2020_13_6_a12/}
}
TY  - JOUR
AU  - Sergei I. Senashov
AU  - Olga V. Gomonova
AU  - Irina L. Savostyanova
AU  - Olga N. Cherepanova
TI  - New classes of solutions of dynamical problems of plasticity
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2020
SP  - 792
EP  - 796
VL  - 13
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2020_13_6_a12/
LA  - en
ID  - JSFU_2020_13_6_a12
ER  - 
%0 Journal Article
%A Sergei I. Senashov
%A Olga V. Gomonova
%A Irina L. Savostyanova
%A Olga N. Cherepanova
%T New classes of solutions of dynamical problems of plasticity
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2020
%P 792-796
%V 13
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2020_13_6_a12/
%G en
%F JSFU_2020_13_6_a12
Sergei I. Senashov; Olga V. Gomonova; Irina L. Savostyanova; Olga N. Cherepanova. New classes of solutions of dynamical problems of plasticity. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 13 (2020) no. 6, pp. 792-796. http://geodesic.mathdoc.fr/item/JSFU_2020_13_6_a12/

[1] Ivlev D. D. et al., The limiting state of deformable bodies and rocks, Physmathlit, M., 1964 (in Russian)

[2] Annin B. D., Bytev V. O., Senashov S. I., Group properties of equations of elasticity and plasticity, Nauka, Novosibirsk, 1985 (in Russian) | MR | Zbl

[3] Polyanin A. D., Zaittsev V. F., Handbook of nonlinear partial differential equations, Second Edition, CRC Press, London–New York, 2012 | MR

[4] Novatsky V. K., Wave problems of the theory of plasticity, Mir, M., 1978 (in Russian)

[5] Zadoyan M. A., Space problems of the theory of plasticity, Nauka, M., 1992 (in Russian) | MR

[6] Ishlinky A. Yu., Ivlev D. D., Mathematical theory of plasticity, Physmathlit, M., 2001 (in Russian)

[7] Senashov S. I., Yakhno A. N., “Reproduction of solutions for bidimensional ideal plasticity”, Journal of Non-Linear Mechanics, 42 (2007), 500–503 | DOI | MR | Zbl

[8] Senashov S. I., Savostyanova I. L., “New solutions of dynamical equations of plasticity”, Journal of Applied and Industrial Mathematics, XXII:4(80) (2019), 89–94 | MR