Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2020_13_5_a8, author = {Abdenour Hamdaoui and Abdelkader Benkhaled and Mekki Terbeche}, title = {Baranchick-type estimators of a multivariate normal mean under the general quadratic loss function}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {608--621}, publisher = {mathdoc}, volume = {13}, number = {5}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JSFU_2020_13_5_a8/} }
TY - JOUR AU - Abdenour Hamdaoui AU - Abdelkader Benkhaled AU - Mekki Terbeche TI - Baranchick-type estimators of a multivariate normal mean under the general quadratic loss function JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2020 SP - 608 EP - 621 VL - 13 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2020_13_5_a8/ LA - en ID - JSFU_2020_13_5_a8 ER -
%0 Journal Article %A Abdenour Hamdaoui %A Abdelkader Benkhaled %A Mekki Terbeche %T Baranchick-type estimators of a multivariate normal mean under the general quadratic loss function %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2020 %P 608-621 %V 13 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2020_13_5_a8/ %G en %F JSFU_2020_13_5_a8
Abdenour Hamdaoui; Abdelkader Benkhaled; Mekki Terbeche. Baranchick-type estimators of a multivariate normal mean under the general quadratic loss function. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 13 (2020) no. 5, pp. 608-621. http://geodesic.mathdoc.fr/item/JSFU_2020_13_5_a8/
[1] A.J. Baranchick, Multiple Regression and estimation of the mean of a multivariate normal distribution, Technical Report, No 51, Stanford Univ., 1964 | MR
[2] A.J. Baranchick, “A family of minimax estimators of the mean of a multivariate normal distribution”, The Annals of Mathematical Statistics, 41:2 (1970), 642–645 | DOI | MR
[3] A. Benkhaled, A. Hamdaoui, “General classes of shrinkage estimators for the multivariate normal mean with unknown variance: minimaxity and limit of risks ratios”, Kragujevac J. Math., 46:2 (2019), 193–213
[4] D. Benmansour, A. Hamdaoui, “Limit of the ratio of risks of James-Stein estimators with unknown variance”, Far East J. Theo. Stat., 36:1 (2011), 31–53 | MR | Zbl
[5] M.E. Bock, “Minimax estimators of the mean of a multivariate normal distribution”, Ann. Statist., 3:1 (1975), 209–218 | DOI | MR | Zbl
[6] A. Hamdaoui, D. Benmansour, “Asymptotic properties of risks ratios of shrinkage estimators”, Hacet. J. Math. Stat., 44:5 (2015), 1181–1195 | MR | Zbl
[7] W. James, C. Stein, “Estimation with Quadratic Loss”, Proc. 4th Berkeley Symp, Math. Statist. Prob., v. 1, Univ of California Press, Berkeley, 1961, 361–379 | MR
[8] K. Selahattin, D. Issam, “The optimal extended balanced loss function estimators”, J. Comput. Appl. Math., 345 (2019), 86–98 | DOI | MR | Zbl
[9] K. Selahattin, S. Sadullah, M. RÖzkale, H.Güler, “More on the restricted ridge regression estimation”, J. Stat. Comput. Simul., 81 (2011), 1433–1448 | DOI | MR | Zbl
[10] C. Stein, “Inadmissibilty of the usual estimator for the mean of a multivariate normal distribution”, Proc. 3th Berkeley Symp. Math. Statist. Prob., v. 1, Univ. of California Press, Berkeley, 1956, 197–206 | MR
[11] C. Stein, “Estimation of the mean of a multivariate normal distribution”, Ann. Statis., 9:6 (1981), 1135–1151 | DOI | MR | Zbl
[12] W.E. Strawderman, “Minimax estimation of location parameters for certain spherically symmetric distribution”, J. Multivariate Anal., 4:1 (1974), 255–264 | DOI | MR | Zbl
[13] X. Xie, S.C. Kou, L. Brown, “Optimal shrinkage estimators of mean parameters in family of distribution with quadratic variance”, Ann. Statis., 44:2 (2016), 564–597 | DOI | MR | Zbl