Baranchick-type estimators of a multivariate normal mean under the general quadratic loss function
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 13 (2020) no. 5, pp. 608-621.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of estimating the mean of a multivariate normal distribution by different types of shrinkage estimators is investigated. We established the minimaxity of Baranchick-type estimators for identity covariance matrix and the matrix associated to the loss function is diagonal. In particular the class of James–Stein estimator is presented. The general situation for both matrices cited above is discussed.
Keywords: James–Stein estimator, loss function, multivariate gaussian random variable, non-central chi-square distribution, shrinkage estimator.
Mots-clés : сovariance matrix
@article{JSFU_2020_13_5_a8,
     author = {Abdenour Hamdaoui and Abdelkader Benkhaled and Mekki Terbeche},
     title = {Baranchick-type estimators of a multivariate normal mean under the general quadratic loss function},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {608--621},
     publisher = {mathdoc},
     volume = {13},
     number = {5},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2020_13_5_a8/}
}
TY  - JOUR
AU  - Abdenour Hamdaoui
AU  - Abdelkader Benkhaled
AU  - Mekki Terbeche
TI  - Baranchick-type estimators of a multivariate normal mean under the general quadratic loss function
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2020
SP  - 608
EP  - 621
VL  - 13
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2020_13_5_a8/
LA  - en
ID  - JSFU_2020_13_5_a8
ER  - 
%0 Journal Article
%A Abdenour Hamdaoui
%A Abdelkader Benkhaled
%A Mekki Terbeche
%T Baranchick-type estimators of a multivariate normal mean under the general quadratic loss function
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2020
%P 608-621
%V 13
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2020_13_5_a8/
%G en
%F JSFU_2020_13_5_a8
Abdenour Hamdaoui; Abdelkader Benkhaled; Mekki Terbeche. Baranchick-type estimators of a multivariate normal mean under the general quadratic loss function. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 13 (2020) no. 5, pp. 608-621. http://geodesic.mathdoc.fr/item/JSFU_2020_13_5_a8/

[1] A.J. Baranchick, Multiple Regression and estimation of the mean of a multivariate normal distribution, Technical Report, No 51, Stanford Univ., 1964 | MR

[2] A.J. Baranchick, “A family of minimax estimators of the mean of a multivariate normal distribution”, The Annals of Mathematical Statistics, 41:2 (1970), 642–645 | DOI | MR

[3] A. Benkhaled, A. Hamdaoui, “General classes of shrinkage estimators for the multivariate normal mean with unknown variance: minimaxity and limit of risks ratios”, Kragujevac J. Math., 46:2 (2019), 193–213

[4] D. Benmansour, A. Hamdaoui, “Limit of the ratio of risks of James-Stein estimators with unknown variance”, Far East J. Theo. Stat., 36:1 (2011), 31–53 | MR | Zbl

[5] M.E. Bock, “Minimax estimators of the mean of a multivariate normal distribution”, Ann. Statist., 3:1 (1975), 209–218 | DOI | MR | Zbl

[6] A. Hamdaoui, D. Benmansour, “Asymptotic properties of risks ratios of shrinkage estimators”, Hacet. J. Math. Stat., 44:5 (2015), 1181–1195 | MR | Zbl

[7] W. James, C. Stein, “Estimation with Quadratic Loss”, Proc. 4th Berkeley Symp, Math. Statist. Prob., v. 1, Univ of California Press, Berkeley, 1961, 361–379 | MR

[8] K. Selahattin, D. Issam, “The optimal extended balanced loss function estimators”, J. Comput. Appl. Math., 345 (2019), 86–98 | DOI | MR | Zbl

[9] K. Selahattin, S. Sadullah, M. RÖzkale, H.Güler, “More on the restricted ridge regression estimation”, J. Stat. Comput. Simul., 81 (2011), 1433–1448 | DOI | MR | Zbl

[10] C. Stein, “Inadmissibilty of the usual estimator for the mean of a multivariate normal distribution”, Proc. 3th Berkeley Symp. Math. Statist. Prob., v. 1, Univ. of California Press, Berkeley, 1956, 197–206 | MR

[11] C. Stein, “Estimation of the mean of a multivariate normal distribution”, Ann. Statis., 9:6 (1981), 1135–1151 | DOI | MR | Zbl

[12] W.E. Strawderman, “Minimax estimation of location parameters for certain spherically symmetric distribution”, J. Multivariate Anal., 4:1 (1974), 255–264 | DOI | MR | Zbl

[13] X. Xie, S.C. Kou, L. Brown, “Optimal shrinkage estimators of mean parameters in family of distribution with quadratic variance”, Ann. Statis., 44:2 (2016), 564–597 | DOI | MR | Zbl