Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2020_13_5_a7, author = {Yulia L. Shefer}, title = {On a transmission problem related to models of electrocardiology}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {596--607}, publisher = {mathdoc}, volume = {13}, number = {5}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JSFU_2020_13_5_a7/} }
TY - JOUR AU - Yulia L. Shefer TI - On a transmission problem related to models of electrocardiology JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2020 SP - 596 EP - 607 VL - 13 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2020_13_5_a7/ LA - en ID - JSFU_2020_13_5_a7 ER -
Yulia L. Shefer. On a transmission problem related to models of electrocardiology. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 13 (2020) no. 5, pp. 596-607. http://geodesic.mathdoc.fr/item/JSFU_2020_13_5_a7/
[1] M. Burger, K.A. Mardal, B.F. Nielsen, “Stability analysis of the inverse transmembrane potential problem in electrocardiography”, Inverse Problems, 26:10 (2010), 105012 | DOI | MR | Zbl
[2] J. Sundnes, G.T. Lines, X. Cai, B.F. Nielsen, K.A. Mardal, A. Tveito, Computing the Electrical Activity in the Heart, Springer-Verlag, 2006 | MR | Zbl
[3] N.N. Tarkhanov, The Cauchy Problem for Solutions of Elliptic Equations, Akademie-Verlag, Berlin, 1995 | MR | Zbl
[4] S. Simanca, “Mixed Elliptic Boundary Value Problems”, Comm. in PDE, 12 (1987), 123–200 | DOI | MR | Zbl
[5] V. Kalinin, A. Kalinin, W.H.W. Schulze, D. Potyagaylo, A. Shlapunov, “On the correctness of the transmembrane potential based inverse problem of ECG”, Computing in Cardiology, 2017, 1–4
[6] M. Schechter, “A generalization of the transmission problem”, Ann. SNS di Pisa, Cl. Sci., 14:3 (1960), 207–236 | MR | Zbl
[7] M. Borsuk, Transmission problem for Elliptic second-order Equations in non-smooth domains, Birkhäuser, Berlin, 2010 | MR
[8] S. Zaremba, “Sur un problème mixte relatif à l'équation de Laplace”, Bull. Acad. Sci. Cracovie, 2 (1910), 314–344
[9] V.P. Mikhailov, Partial differential equations, Nauka, M., 1976 (in Russian) | MR
[10] L.I. Hedberg, T.H. Wolff, “Thin sets in nonlinear potential theory”, Ann. Inst. Fourier, 33:4 (1983), 161–187 | DOI | MR | Zbl
[11] G.B. Folland, J.J. Kohn, The Neumann Problem for the Cauchy-Riemann Complex, Princeton University Press, 1973 | MR
[12] A.A. Shlapunov, N.N. Tarkhanov, “On completeness of root functions of Sturm-Liouville problems with discontinuous boundary operators”, J. of Differential Equations, 255 (2013), 3305–3337 | DOI | MR | Zbl
[13] M.S. Agranovich, M.I. Vishik, “Elliptic problems with a parameter and parabolic problems of general type”, Rus. Math. Surv., 19:3 (1964), 53–157 | DOI | MR | Zbl
[14] Z. Ya.Shapiro, “On general boundary problems for equations of elliptic type”, Izv. Akad. Nauk SSSR Ser. Mat., 17:6 (1953), 539–562 (in Russian) | MR | Zbl
[15] A.A. Shlapunov, N.N. Tarkhanov, “Bases with double orthogonality in the Cauchy problem for systems with injective symbols”, Proceedings LMS, 3:1 (1995), 1–52 | MR | Zbl
[16] D. Gilbarg, N. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin, 1977 | MR | Zbl
[17] A.A. Shlapunov, “On the Cauchy problem for some elliptic systems in a shell in $\mathbb {R}^n$”, Zeitschrift für Angewandte Mathematik und Mechanik, 77:11 (1997), 849–859 | DOI | MR | Zbl