On the equationally Artinian groups
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 13 (2020) no. 5, pp. 583-595.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article, we study the property of being equationally Artinian in groups. We define the radical topology corresponding to such groups and investigate the structure of irreducible closed sets of these topologies. We prove that a finite extension of an equationally Artinian group is again equationally Artinian. We also show that a quotient of an equationally Artinian group of the form $G[t]$ by a normal subgroup which is a finite union of radicals, is again equationally Artnian. A necessary and sufficient condition for an Abelian group to be equationally Artinian will be given as the last result. This will provide a large class of examples of equationally Artinian groups.
Keywords: algebraic geometry over groups, systems of group equations, radicals, Zariski topology, radical topology, equationally Noetherian groups, equationally Artinian groups.
@article{JSFU_2020_13_5_a6,
     author = {Mohammad Shahryari and Javad Tayyebi},
     title = {On the equationally {Artinian} groups},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {583--595},
     publisher = {mathdoc},
     volume = {13},
     number = {5},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2020_13_5_a6/}
}
TY  - JOUR
AU  - Mohammad Shahryari
AU  - Javad Tayyebi
TI  - On the equationally Artinian groups
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2020
SP  - 583
EP  - 595
VL  - 13
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2020_13_5_a6/
LA  - en
ID  - JSFU_2020_13_5_a6
ER  - 
%0 Journal Article
%A Mohammad Shahryari
%A Javad Tayyebi
%T On the equationally Artinian groups
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2020
%P 583-595
%V 13
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2020_13_5_a6/
%G en
%F JSFU_2020_13_5_a6
Mohammad Shahryari; Javad Tayyebi. On the equationally Artinian groups. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 13 (2020) no. 5, pp. 583-595. http://geodesic.mathdoc.fr/item/JSFU_2020_13_5_a6/

[1] G. Baumslag, A. Myasnikov, V. Remeslennikov, “Algebraic geometry over groups, I. Algebraic sets and ideal theory”, J. Algebra, 219 (1999), 16–79 | DOI | MR | Zbl

[2] G. Baumslag, A. Myasnikov, V. Romankov, “Two theorems about equationally Noetherian groups”, J. Algebra, 194 (1997), 654–64 | DOI | MR

[3] E. Daniyarova, A. Myasnikov, V. Remeslennikov, Algebra and Discrete Mathamatics, 1 (2008), 80–112 | DOI | MR

[4] E. Daniyarova, A. Myasnikov, V. Remeslennikov, “Algebraic geometry over algebraic structures, II: Fundations”, J. Math. Sci., 185:3 (2012), 389–416 | DOI | MR | Zbl

[5] E. Daniyarova, A. Myasnikov, V. Remeslennikov, “Algebraic geometry over algebraic structures, III: Equationally noetherian property and compactness”, South. Asian Bull. Math., 35:1 (2011), 35–68 | MR | Zbl

[6] E. Daniyarova, A. Myasnikov, V. Remeslennikov, “Algebraic geometry over algebraic structures, IV: Equatinal domains and co-domains”, Algebra and Logic, 49:6 (2011), 483–508 | DOI | MR | Zbl

[7] O. Kharlampovich, A. Myasnikov, “Tarski's problem about the elementary theory of free groups has a psitive solution”, E.R.A. of AMS, 4 (1998), 101–108 | MR | Zbl

[8] O. Kharlampovich, A. Myasnikov, “Irreducible affine varieties over a free group. I: irreducibility of quadratic equations and Nullstellensatz”, J. Algebra, 200:2 (1998), 472–516 | DOI | MR | Zbl

[9] O. Kharlampovich, A. Myasnikov, “The elemntary theory of free non-abelian groups”, J. Algebra, 302 (2006), 451–552 | DOI | MR | Zbl

[10] G. Makanin, “Equations in free groups”, Math. USSR-Izv., 21:3 (1982), 483–546 | DOI | MR

[11] P. Modabberi, M. Shahryari, “Compactness conditions in universal algebraic geometry”, Algebra and Logic, 55:2 (2016), 146–172 | DOI | MR | Zbl

[12] P. Modabberi, M. Shahryari, “On the equational Artinian algebras”, Siberian Electronic Mathematical Reports, 13 (2016), 875–881 | MR | Zbl

[13] B. Plotkin, Seven lectures in universal algebraic geometry, preprints, Arxiv | MR

[14] A. Razborov, “On systems of equations in free groups”, Math. USSR-Izv., 25:1 (1982), 115–162 | DOI | MR

[15] Z. Sela, Diophantine geometry over groups: I-X, preprints, Arxiv | MR

[16] M. Shahryari, A. Shevliyakov, “Direct products, varieties, and compacness conditions”, Groups Complex, Cryptol., 9:2 (2017), 159–166 | MR | Zbl