Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2020_13_5_a6, author = {Mohammad Shahryari and Javad Tayyebi}, title = {On the equationally {Artinian} groups}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {583--595}, publisher = {mathdoc}, volume = {13}, number = {5}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JSFU_2020_13_5_a6/} }
TY - JOUR AU - Mohammad Shahryari AU - Javad Tayyebi TI - On the equationally Artinian groups JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2020 SP - 583 EP - 595 VL - 13 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2020_13_5_a6/ LA - en ID - JSFU_2020_13_5_a6 ER -
Mohammad Shahryari; Javad Tayyebi. On the equationally Artinian groups. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 13 (2020) no. 5, pp. 583-595. http://geodesic.mathdoc.fr/item/JSFU_2020_13_5_a6/
[1] G. Baumslag, A. Myasnikov, V. Remeslennikov, “Algebraic geometry over groups, I. Algebraic sets and ideal theory”, J. Algebra, 219 (1999), 16–79 | DOI | MR | Zbl
[2] G. Baumslag, A. Myasnikov, V. Romankov, “Two theorems about equationally Noetherian groups”, J. Algebra, 194 (1997), 654–64 | DOI | MR
[3] E. Daniyarova, A. Myasnikov, V. Remeslennikov, Algebra and Discrete Mathamatics, 1 (2008), 80–112 | DOI | MR
[4] E. Daniyarova, A. Myasnikov, V. Remeslennikov, “Algebraic geometry over algebraic structures, II: Fundations”, J. Math. Sci., 185:3 (2012), 389–416 | DOI | MR | Zbl
[5] E. Daniyarova, A. Myasnikov, V. Remeslennikov, “Algebraic geometry over algebraic structures, III: Equationally noetherian property and compactness”, South. Asian Bull. Math., 35:1 (2011), 35–68 | MR | Zbl
[6] E. Daniyarova, A. Myasnikov, V. Remeslennikov, “Algebraic geometry over algebraic structures, IV: Equatinal domains and co-domains”, Algebra and Logic, 49:6 (2011), 483–508 | DOI | MR | Zbl
[7] O. Kharlampovich, A. Myasnikov, “Tarski's problem about the elementary theory of free groups has a psitive solution”, E.R.A. of AMS, 4 (1998), 101–108 | MR | Zbl
[8] O. Kharlampovich, A. Myasnikov, “Irreducible affine varieties over a free group. I: irreducibility of quadratic equations and Nullstellensatz”, J. Algebra, 200:2 (1998), 472–516 | DOI | MR | Zbl
[9] O. Kharlampovich, A. Myasnikov, “The elemntary theory of free non-abelian groups”, J. Algebra, 302 (2006), 451–552 | DOI | MR | Zbl
[10] G. Makanin, “Equations in free groups”, Math. USSR-Izv., 21:3 (1982), 483–546 | DOI | MR
[11] P. Modabberi, M. Shahryari, “Compactness conditions in universal algebraic geometry”, Algebra and Logic, 55:2 (2016), 146–172 | DOI | MR | Zbl
[12] P. Modabberi, M. Shahryari, “On the equational Artinian algebras”, Siberian Electronic Mathematical Reports, 13 (2016), 875–881 | MR | Zbl
[13] B. Plotkin, Seven lectures in universal algebraic geometry, preprints, Arxiv | MR
[14] A. Razborov, “On systems of equations in free groups”, Math. USSR-Izv., 25:1 (1982), 115–162 | DOI | MR
[15] Z. Sela, Diophantine geometry over groups: I-X, preprints, Arxiv | MR
[16] M. Shahryari, A. Shevliyakov, “Direct products, varieties, and compacness conditions”, Groups Complex, Cryptol., 9:2 (2017), 159–166 | MR | Zbl