Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2020_13_4_a9, author = {Halima Boudada and Sara Leulmi and Soumia Kharfouch}, title = {Rate of the almost sure convergence of a generalized regression estimate based on truncated and functional data}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {480--491}, publisher = {mathdoc}, volume = {13}, number = {4}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JSFU_2020_13_4_a9/} }
TY - JOUR AU - Halima Boudada AU - Sara Leulmi AU - Soumia Kharfouch TI - Rate of the almost sure convergence of a generalized regression estimate based on truncated and functional data JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2020 SP - 480 EP - 491 VL - 13 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2020_13_4_a9/ LA - en ID - JSFU_2020_13_4_a9 ER -
%0 Journal Article %A Halima Boudada %A Sara Leulmi %A Soumia Kharfouch %T Rate of the almost sure convergence of a generalized regression estimate based on truncated and functional data %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2020 %P 480-491 %V 13 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2020_13_4_a9/ %G en %F JSFU_2020_13_4_a9
Halima Boudada; Sara Leulmi; Soumia Kharfouch. Rate of the almost sure convergence of a generalized regression estimate based on truncated and functional data. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 13 (2020) no. 4, pp. 480-491. http://geodesic.mathdoc.fr/item/JSFU_2020_13_4_a9/
[1] J. Barrientos-Marin, F. Ferraty, P. Vieu, Journal of Nonparametric Statistics, 22:5 (2010), 617–632 | DOI
[2] S. Derrar, A. Laksaci, E. Ould Sa\"{i}d, Journal of Statistical Theory and Practice, 9:4 (2015), 823–849 | DOI
[3] F. Ferraty, P. Vieu, Nonparametric functional data analysis: theory and practice, Springer Science Business Media, 2006
[4] S. He, G.L. Yang, Estimation of the truncation probability in the random truncation model, 1998, 1011–1027
[5] N. Helal, E. Ould-Sa\"{i}d, Kernel conditional quantile estimator under left truncation for functional regressors, 36 (2016), 25–48
[6] M. Lemdani, E. Ould-Said, Asymptotic behavior of the hazard rate kernel estimator under truncated and censored data, 36:1 (2007), 155–173
[7] S. Leulmi, F. Messaci, Journal of Siberian Federal University. Mathematics abd Physics, 12 (2019), 379–391 | DOI
[8] S. Leulmi, F. Messaci, “Local linear estimation of a generalized regression function with functional dependent data”, Communications in Statistics – Theory and Methods, 47:23 (2018), 5795–5811
[9] F. Messaci, N. Nemouchi, I. Ouassou, M. Rachdi, Statistical Methods $\$ Applications, 24:4 (2015), 597–622 | DOI
[10] W. Stute, “Almost sure representations of the product-limit estimator for truncated data”, The Annals of Statistics, 21:1 (1993), 146–156
[11] M. Woodroofe, “Estimating a distribution function with truncated data”, The Annals of Statistics, 13:1 (1985), 163–177
[12] X. Xiong, P. Zhou, C. Ailian, “Asymptotic normality of the local linear estimation of the conditional density for functional time-series data”, Communications in Statistics – Theory and Methods, 47:14 (2018), 3418–3440