Algebraic geometry over Heyting algebras
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 13 (2020) no. 4, pp. 414-421.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article, we study the algebraic geometry over Heyting algebras and we investigate the properties of being equationally Noetherian and $q_{\omega}$-compact over such algebras.
Keywords: universal algebraic geometry, systems of equations, radicals, Zariski topology, equationally Noetherian algebras, $q_{\omega}$-compact algebras.
Mots-clés : Heyting algebras
@article{JSFU_2020_13_4_a2,
     author = {Mahdiyeh Nouri},
     title = {Algebraic geometry over {Heyting} algebras},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {414--421},
     publisher = {mathdoc},
     volume = {13},
     number = {4},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2020_13_4_a2/}
}
TY  - JOUR
AU  - Mahdiyeh Nouri
TI  - Algebraic geometry over Heyting algebras
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2020
SP  - 414
EP  - 421
VL  - 13
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2020_13_4_a2/
LA  - en
ID  - JSFU_2020_13_4_a2
ER  - 
%0 Journal Article
%A Mahdiyeh Nouri
%T Algebraic geometry over Heyting algebras
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2020
%P 414-421
%V 13
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2020_13_4_a2/
%G en
%F JSFU_2020_13_4_a2
Mahdiyeh Nouri. Algebraic geometry over Heyting algebras. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 13 (2020) no. 4, pp. 414-421. http://geodesic.mathdoc.fr/item/JSFU_2020_13_4_a2/

[1] G. Baumslag, A. Myasnikov, V. Remeslennikov, “Algebraic geometry over groups I. Algebraic sets and ideal theory”, J. Algebra, 219 (1999), 16–79

[2] E. Daniyarova, A. Myasnikov, V. Remeslennikov, “Unification theorems in algebraic geometry”, Algebra and Discrete Mathamatics, 1 (2008), 80–112

[3] E. Daniyarova, A. Myasnikov, V. Remeslennikov, “Algebraic geometry over algebraic structures, II: Fundations”, J. Math. Sci., 185:3 (2012), 389–416

[4] E. Daniyarova, A. Myasnikov, V. Remeslennikov, “Algebraic geometry over algebraic structures, III: Equationally noetherian property and compactness”, South. Asian Bull. Math., 35:1 (2011), 35–68

[5] E. Daniyarova, A. Myasnikov, V. Remeslennikov, “Algebraic geometry over algebraic structures. IV: Equatinal domains and co-domains”, Algebra and Logic, 49 (2011), 483–508

[6] S. Goncharov, Countable Boolean algebras and decidability, Consultant Baurou, New York, 1997

[7] O. Kharlampovich, A. Myasnikov, “Tarski's problem about the elementary theory of free groups has a psitive solution”, E.R.A. of AMS, 4 (1998), 101–108

[8] O. Kharlampovich, A. Myasnikov, “Irreducible affine varieties over a free group. I: irreducibility of quadratic equations and Nullstellensatz”, J. Algebra, 200:2 (1998), 472–516

[9] O. Kharlampovich, A. Myasnikov, “The elemntary theory of free non-abelian groups”, J. Algebra, 302 (2006), 451–552

[10] G. Makanin, “Equations in a free group”, Math. USSR-Izv., 21:3 (1983), 483–546

[11] P. Modabberi, M. Shahryari, “Compactness conditions in universal algebraic geometry”, Algebra and Logic, 55:2 (2016), 146–172

[12] P. Modabberi, M. Shahryari, “On the equational Artinian algebras”, Siberian Electronic Mathematical Reports, 13 (2016), 875–881

[13] B. Plotkin, Seven lectures in universal algebraic geometry, preprints, 2002

[14] A. Razborov, “On systems of equations in free groups”, Math. USSR-Izv., 25:1 (1985), 115–162

[15] Z. Sela, Diophantine geometry over groups IX: Envelopes and Imaginaries, 2009, arXiv: 0909.0774

[16] M. Shahryari, A. Shevlyakov, “Direct products, varieties, and compacness conditions”, Groups Complexity Cryptology, 9:2 (2017), 159–166

[17] A. Shevlyakov, “Algebraic geometry over Boolean algebras in the language with constants”, J. Math. Sciences, 206:6 (2015), 742–757