Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2020_13_4_a1, author = {Kirill A. Kirillov}, title = {On error estimates in $S_p$ for cubature formulas exact for {Haar} polynomials}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {398--413}, publisher = {mathdoc}, volume = {13}, number = {4}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JSFU_2020_13_4_a1/} }
TY - JOUR AU - Kirill A. Kirillov TI - On error estimates in $S_p$ for cubature formulas exact for Haar polynomials JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2020 SP - 398 EP - 413 VL - 13 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2020_13_4_a1/ LA - en ID - JSFU_2020_13_4_a1 ER -
%0 Journal Article %A Kirill A. Kirillov %T On error estimates in $S_p$ for cubature formulas exact for Haar polynomials %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2020 %P 398-413 %V 13 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2020_13_4_a1/ %G en %F JSFU_2020_13_4_a1
Kirill A. Kirillov. On error estimates in $S_p$ for cubature formulas exact for Haar polynomials. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 13 (2020) no. 4, pp. 398-413. http://geodesic.mathdoc.fr/item/JSFU_2020_13_4_a1/
[1] V.I. Krylov, Approximate Calculation of Integrals, Nauka, M., 1967 (in Russian)
[2] J. Radon, “Zur mechanischen kubatur”, Monatshefte für Mathematik, 52:4 (1948), 286–300
[3] I.P. Mysovskikh, Interpolation Cubature Formulas, Nauka, M., 1981 (in Russian)
[4] M.V. Noskov, H.J. Schmid, “Cubature formulas of high trigonometric accuracy”, Comput. Math. Math. Phys., 44:5 (2004), 740–749
[5] R. Cools, I.H. Sloan, “Minimal cubature fomulae of trigonometric degree”, Mathematics of Computation, 65:216 (1996), 1583–1600
[6] R. Cools, J.N. Lyness, Mathematics of Computation, 70:236 (2001), 1549–1567 | DOI
[7] N.N. Osipov, R. Cools, M. V. Noskov, “Extremal lattices and the construction of lattice rules”, Applied Mathematics and Computation, 217:9 (2011), 4397–4407
[8] I.M. Sobol', Multidimensional Quadrature Formulas and Haar Functions, Nauka, M., 1969 (in Russian)
[9] K.A. Kirillov, M.V. Noskov, “Minimal quadrature formulas accurate for Haar polynomials”, Comput. Math. Math. Phys., 42:6 (2002), 758–766
[10] K.A. Kirillov, “Estimates of the norm of the error functional of quadrature formulas exact for Haar polynomials”, J. of Siberian Federal University, Mathematics $\$ Physics, 4:4 (2011), 479–488 (in Russian)
[11] K.A. Kirillov, “Lower estimates for node number of cubature formulas exact for Haar polynomials in two-dimensional case”, Vychislitelnye tekhnologii, 9, special issue (2004), 62–71 (in Russian)
[12] K.A. Kirillov, “Construction of minimal cubature formulas exact for Haar polynomials of high degrees in two-dimensional case”, Vychislitelnye tekhnologii, 10, special issue (2005), 29–47 (in Russian)
[13] M.V. Noskov, K.A. Kirillov, “Minimal cubature formulas exact for Haar polynomials”, J. of Approximation Theory, 162:3 (2010), 615–627
[14] K.A. Kirillov, “An algorithm for constructing minimal cubature formulas with Haar $d$-property in the two-dimensional case”, J. of Siberian Federal University, Mathematics $\$ Physics, 3:2 (2010), 205–215 (in Russian)
[15] K.A. Kirillov, “On minimal cubature formulas exact for Haar polynomials of low degrees in the two-dimensional case”, J. of Siberian Federal University, Mathematics $\$ Physics, 7:3 (2014), 318–323
[16] K.A. Kirillov, M.V. Noskov, Comput. Math. Math. Phys., 49:1 (2009), 1–11 | DOI
[17] A. Haar, “Zur Theorie der Orthogonalen Funktionensysteme”, Math. Ann., 69 (1910), 331–371