$L^p$-bound for the Fourier transform of surface-carried measures supported on hypersurfaces with $D_\infty$ type singularities
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 13 (2020) no. 3, pp. 350-359.

Voir la notice de l'article provenant de la source Math-Net.Ru

Estimate for Fourier transform of surface-carried measures supported on non-convex surfaces of three-dimensional Euclidean space is considered in this paper.The exact convergence exponent was found wherein the Fourier transform of measures is integrable in tree-dimensional space. This result gives an answer to the question posed by Erdösh and Salmhofer.
Keywords: oscillatory integral, surface-carried measure.
Mots-clés : Fourier transform
@article{JSFU_2020_13_3_a8,
     author = {Nigina A. Soleeva},
     title = {$L^p$-bound for the {Fourier} transform of surface-carried measures supported on hypersurfaces with $D_\infty$ type singularities},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {350--359},
     publisher = {mathdoc},
     volume = {13},
     number = {3},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2020_13_3_a8/}
}
TY  - JOUR
AU  - Nigina A. Soleeva
TI  - $L^p$-bound for the Fourier transform of surface-carried measures supported on hypersurfaces with $D_\infty$ type singularities
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2020
SP  - 350
EP  - 359
VL  - 13
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2020_13_3_a8/
LA  - en
ID  - JSFU_2020_13_3_a8
ER  - 
%0 Journal Article
%A Nigina A. Soleeva
%T $L^p$-bound for the Fourier transform of surface-carried measures supported on hypersurfaces with $D_\infty$ type singularities
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2020
%P 350-359
%V 13
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2020_13_3_a8/
%G en
%F JSFU_2020_13_3_a8
Nigina A. Soleeva. $L^p$-bound for the Fourier transform of surface-carried measures supported on hypersurfaces with $D_\infty$ type singularities. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 13 (2020) no. 3, pp. 350-359. http://geodesic.mathdoc.fr/item/JSFU_2020_13_3_a8/

[1] G.I. Arkhipov, A.A. Karatsuba, V.N. Chubarilov, “Tringonometric integrals”, Izv. AN SSSR, Ser. Mat., 43:5 (1979), 971–1003 (in Russian) | MR

[2] L. Erdös, M. Salmhofer, Math. Z., 257 (2007), 261–294 | DOI | MR | Zbl

[3] B. Randol, “On the asymptotic behavior of the Fourier transform of the indicator function of a convex set”, Trans. AMS, 139 (1969), 278–285 | MR

[4] V.I. Arnold, A.N. Varchenko, S.M. Huseyn-zade, Features of differentiable mappings, v. 1, Classification of critical points of caustics and wave fronts, Nauka, M., 1982 (in Russian) | MR

[5] E.M. Stein, Harmonic analysis, Real-valued methods and oscillatory integrals, Princeton University Press, Princeton, 1993 | MR

[6] I.A. Ikromov, D. Müller, Fourier restriction for hypersurfaces in three dimensions and Newton polyhedra, Annals of Mathematics Studies, 194, Princeton–Oxford, 2016 | MR | Zbl

[7] I.A. Ikromov, Functional Anal. and Its Appl., 29:3 (1995), 161–168 | DOI | MR

[8] V.N. Karpushkin, J. Math. Sci., 35 (1986), 2809–2826 | DOI | Zbl