Exact solution of 3D Navier--Stokes equations
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 13 (2020) no. 3, pp. 306-313.

Voir la notice de l'article provenant de la source Math-Net.Ru

Procedure for constructing exact solutions of 3D Navier–Stokes equations for an incompressible fluid flow is proposed. It is based on the relations representing the previously obtained first integral of the Navier–Stokes equations. A primary generator of particular solutions is proposed. It is used to obtain new classes of exact solutions.
Keywords: integral, primary generator of solutions
Mots-clés : incompressible fluid, motion, equation, exact solution.
@article{JSFU_2020_13_3_a4,
     author = {Alexander V. Koptev},
     title = {Exact solution of {3D} {Navier--Stokes} equations},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {306--313},
     publisher = {mathdoc},
     volume = {13},
     number = {3},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2020_13_3_a4/}
}
TY  - JOUR
AU  - Alexander V. Koptev
TI  - Exact solution of 3D Navier--Stokes equations
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2020
SP  - 306
EP  - 313
VL  - 13
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2020_13_3_a4/
LA  - en
ID  - JSFU_2020_13_3_a4
ER  - 
%0 Journal Article
%A Alexander V. Koptev
%T Exact solution of 3D Navier--Stokes equations
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2020
%P 306-313
%V 13
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2020_13_3_a4/
%G en
%F JSFU_2020_13_3_a4
Alexander V. Koptev. Exact solution of 3D Navier--Stokes equations. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 13 (2020) no. 3, pp. 306-313. http://geodesic.mathdoc.fr/item/JSFU_2020_13_3_a4/

[1] L.I. Sedov, Mekhanika sploshnoy sredy, v. 2, Nauka, M., 1970 (in Russian)

[2] L.G. Loitsaynskiy, Mechanics of Fluid and Gas, Nauka, M., 1987 (in Russian)

[3] O.A. Lodizhenskaya, The Mathematical Theory of Viscous Incompressible Fluid, Gordon and Breach, New York, 1969 | MR

[4] C.L. Fefferman, Existence and Smoothness of the Navier–Stokes Equation, Princeton Univ., Math. Dept., Princeton, NJ, USA, 2000 | MR

[5] A.D. Polynin, V.F. Zaitsev, Handbook of Nonlinear Partial Differential Equations, second adition, CRS Press, London, UK, 2012 | MR

[6] S.N. Aristov, A.D. Polynin, Dokl. Phys., 54 (2009), 316–321 | DOI | MR | Zbl

[7] A.V. Koptev, E.M. Pastushok, “New Solutios of 2D Navier–Stokes Equations”, American Scientific Journal, New York, 2:17 (2017), 4–7

[8] A.V. Koptev, “Generator of Solution of 2D Navier–Stokes Equations”, Journal of Siberian Federal University. Math. and Phys., 7:3 (2014), 324–330 | MR

[9] A.V. Koptev, “Integrals of Navier–Stokes equations”, Trudy Srednevolzhskogo matematicheskogo obshchestva, 6:1 (2004), 215–225 (in Russian) | Zbl

[10] A.V. Koptev, “Integrals of Motion of an Incompressible Medium Flow. From Classic to Modern”, Handbook on Navier-Stokes Equations. Theory and Applied Analysis, Nova Science Publishers, New York, 2017, 443–459

[11] A.V. Koptev, “How solve 3D Navier–Stokes equations”, Izvestia Rossiyskogo gosudarsvennogo pedagogicheskogo universiteta im. Gertsena, Saint-Petersburg, 173 (2015), 7–15 (in Russian)