Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2020_13_3_a1, author = {Isakjan M. Khamdamov}, title = {On limit theorem for the number of vertices of the convex hulls in a unit disk}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {275--284}, publisher = {mathdoc}, volume = {13}, number = {3}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JSFU_2020_13_3_a1/} }
TY - JOUR AU - Isakjan M. Khamdamov TI - On limit theorem for the number of vertices of the convex hulls in a unit disk JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2020 SP - 275 EP - 284 VL - 13 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2020_13_3_a1/ LA - en ID - JSFU_2020_13_3_a1 ER -
%0 Journal Article %A Isakjan M. Khamdamov %T On limit theorem for the number of vertices of the convex hulls in a unit disk %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2020 %P 275-284 %V 13 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2020_13_3_a1/ %G en %F JSFU_2020_13_3_a1
Isakjan M. Khamdamov. On limit theorem for the number of vertices of the convex hulls in a unit disk. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 13 (2020) no. 3, pp. 275-284. http://geodesic.mathdoc.fr/item/JSFU_2020_13_3_a1/
[1] A.J. Cabo, P. Groeneboom, Probab. Theory Relat. Fields, 100 (1994), 31–55 | DOI | MR | Zbl
[2] H. Carnal, Z. Wahrscheinlichkeits theorie verw. Geb., 15 (1970), 168–176 | DOI | MR | Zbl
[3] B. Efron, Biometrika, 52 (1965), 331–343 | DOI | MR | Zbl
[4] P. Groeneboom, Probab. Theory Related Fields, 79 (1988), 327–368 | DOI | MR | Zbl
[5] P. Groeneboom, “Convex hulls of uniform samples from a convex polygon”, Adv. Appl. Prob. (SGSA), 44 (2012), 330–342 | DOI | MR | Zbl
[6] T. Hsing, “On the asymptotic distribution of the area outside a random convex hull in a disk”, The Annals of Applied Probability, 4:2 (1994), 478–493 | DOI | MR | Zbl
[7] I. Hueter, “The convex hull of a normal sample”, Adv. Appl. Prob., 26 (1994), 855–875 | DOI | MR | Zbl
[8] I.A. Ibragimov, Yu.U. Linnik, Independent and stationary sequences of random variables, Izdatelstvo Nauka, M., 1965 (in Russian) | MR
[9] I.M. Khamdamov, T. Kh.Adirov, “Martingale properties of vertex functionals generated by Poisson point processes”, Reports of the Academy of Sciences of Uzbekistan, 2015, no. 1, 9–11 (in Russian)
[10] I.M. Khamdamov, T. Kh.Adirov, “One of the properties of the convex hull generated by a Poisson point process”, Uzbek Mathematical Journal, 2019, no. 3, 60–63 | DOI | MR
[11] A.V. Nagaev, “Some properties of convex hulls generated by homogeneous Poisson point processes in an unbounded convex domain”, Ann. Inst. Statist. Math., 47:1 (1995), 21–29 | DOI | MR | Zbl
[12] A.V. Nagaev, I.M. Khamdamov, Limit theorems for functionals of random convex hulls, Preprint of Institute of Mathematics, Academy of Sciences of Uzbekistan, Tashkent, 1991 (in Russian)
[13] A.V. Nagaev, I.M. Khamdamov, “On the Role of Extreme Summands in Sums of Independent Random Variables”, Theory of Probability and Its Applications, 47:3 (2003), 533–541 | DOI | MR
[14] H. Raynaud, “Sur l'enveloppe convexe des nuages de points aleatoires dans”, J. Appl. Prob., 7 (1970), 35–48 | MR | Zbl
[15] A. Reny, R. Sulanke, “Uber diekovexe Hulle von zufalling gewahlten Punkten”, Z. Wahrscheinlichkeits theorie verw. Geb., 2 (1963), 75–84 | DOI | MR | Zbl