Asymptotic analysis of retrial queueing system $M/M/1$ with impatient customers, collisions and unreliable server
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 13 (2020) no. 2, pp. 218-230.

Voir la notice de l'article provenant de la source Math-Net.Ru

The retrial queueing system of $M/M/1$ type with Poisson flow of arrivals, impatient customers, collisions and unreliable service device is considered in the paper. The novelty of our contribution is the inclusion of breakdowns and repairs of the service into our previous study to make the problem more realistic and hence more complicated. Retrial time of customers in the orbit, service time, impatience time of customers in the orbit, server lifetime (depending on whether it is idle or busy) and server recovery time are supposed to be exponentially distributed. An asymptotic analysis method is used to find the stationary distribution of the number of customers in the orbit. The heavy load of the system and long time patience of customers in the orbit are proposed as asymptotic conditions. Theorem about the Gaussian form of the asymptotic probability distribution of the number of customers in the orbit is formulated and proved. Numerical examples are given to show the accuracy and the area of feasibility of the proposed method.
Keywords: retrial queue, impatient customers, unreliable server, asymptotic analysis.
Mots-clés : collisions
@article{JSFU_2020_13_2_a8,
     author = {Elena Yu. Danilyuk and Svetlana P. Moiseeva and Janos Sztrik},
     title = {Asymptotic analysis of retrial queueing system $M/M/1$ with impatient customers, collisions and unreliable server},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {218--230},
     publisher = {mathdoc},
     volume = {13},
     number = {2},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2020_13_2_a8/}
}
TY  - JOUR
AU  - Elena Yu. Danilyuk
AU  - Svetlana P. Moiseeva
AU  - Janos Sztrik
TI  - Asymptotic analysis of retrial queueing system $M/M/1$ with impatient customers, collisions and unreliable server
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2020
SP  - 218
EP  - 230
VL  - 13
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2020_13_2_a8/
LA  - en
ID  - JSFU_2020_13_2_a8
ER  - 
%0 Journal Article
%A Elena Yu. Danilyuk
%A Svetlana P. Moiseeva
%A Janos Sztrik
%T Asymptotic analysis of retrial queueing system $M/M/1$ with impatient customers, collisions and unreliable server
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2020
%P 218-230
%V 13
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2020_13_2_a8/
%G en
%F JSFU_2020_13_2_a8
Elena Yu. Danilyuk; Svetlana P. Moiseeva; Janos Sztrik. Asymptotic analysis of retrial queueing system $M/M/1$ with impatient customers, collisions and unreliable server. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 13 (2020) no. 2, pp. 218-230. http://geodesic.mathdoc.fr/item/JSFU_2020_13_2_a8/

[1] J.R.Artalejo, A.Gomez-Corral, Retrial Queueing Systems: A Computational Approach, Springer, 2008 | MR | Zbl

[2] J.R.Artalejo, G.I.Falin, “Standard and retrial queueing systems: A comparative analysis”, Revista Matematica Complutense, 15 (2002), 101–129 | MR | Zbl

[3] G.I.Falin, J.G.C.Templeton, Retrial queues, Chapman $\$ Hall, London–New York, 1997 | Zbl

[4] E.Yu.Danilyuk, E.A.Fedorova, S.P.Moiseeva, Automation and Remote Control, 79:12 (2018), 2136–2146 | DOI | MR | Zbl

[5] A.Nazarov, J.Sztrik, A.Kvach, T.Berczes, Annals of Operations Research, 277:2 (2019), 213–229 | DOI | MR | Zbl

[6] L.Lakaour, D.Aïssani, K.Adel-Aissanou, K.Barkaoui, Methodology and Computing in Applied Probability, 21:4 (2019), 1395–1406 | DOI | MR

[7] E.Danilyuk, S.Moiseeva, A.Nazarov, Information Technologies and Mathematical Modelling. Queueing Theory and Applications, ITMM 2019, Communications in Computer and Information Science, 1109, eds. Dudin A., Nazarov A., Moiseev A., 2019, 230–242 | DOI

[8] J.Kim, “Retrial queueing system with collision and impatience”, Communications of the Korean Mathematical Society, 4 (2010), 647–653 | DOI | MR | Zbl

[9] O.Vygovskaya, E.Danilyuk, S.Moiseeva, Queueing Theory and Applications, ITMM 2018, WRQ 2018, Communications in Computer and Information Science, 912, eds. Dudin A., Nazarov A., Moiseev A., 2018, 387–399 | DOI

[10] E.Danilyuk, O.Vygovskaya, S.Moiseeva, S.Rozhkova, DCCN 2018, Communications in Computer and Information Science, 919, eds. Vishnevskiy V., Kozyrev D., 2018, 493–504 | DOI

[11] E.Fedorova, E.Danilyuk, A.Nazarov, A.Melikov, Queueing Theory and Network Applications, QTNA 2019, Lecture Notes in Computer Science, 11688, eds. Phung-Duc T., Kasahara S., Wittevrongel S., 2019, 3–15 | DOI

[12] M.P.D'Arienzo, A.N.Dudin, S.A.Dudin, R.Manzo, Journal of Ambient Intelligence and Humanized Computing, 2019, 1–9 | DOI

[13] B.Kim, J.Kim, “Extension of the loss probability formula to an overloaded queue with impatient customers”, Statistics $\$ Probability Letters, 134 (2018), 54–62 | DOI | MR | Zbl

[14] A.Aissani, F.Lounis, D.Hamadouche, S.Taleb, American Journal of Mathematical and Management Sciences, 38:2 (2019), 125–150 | DOI | MR

[15] A.N.Dudin, “Operations Research Perspectives”, Operations Research, 5 (2018), 245–255 | MR

[16] C.J.Ancker, A.V.Gafarian, “Some Queuing Problems with Balking and Reneging. I”, Operations Research, 11:1 (1963), 88–100 | DOI | MR | Zbl

[17] F.A.Haight, “Queueing with Balking”, Biometrika, 44:3/4 (1957), 360–369 | DOI | MR | Zbl

[18] D.Y.Barrer, “Queuing with Impatient Customers and Indifferent Clerks”, Operations Research, 5:5 (1957), 644–649 | DOI | MR | Zbl

[19] R.Kumar, S.K.Sharma, International Journal of Mathematics in Operational Research, 5:6 (2013), 709–720 | DOI | MR | Zbl

[20] R.Kumar, B.K.Som, “Economic analysis of M/M/c/N queue with retention of impatient customers”, Advance Modeling and optimization, 16:2 (2014), 339–353 | MR | Zbl

[21] B.K.Som, Advances in Analytics and Applications, 2018, 261–272 | DOI

[22] A.Santhakumaran, B.Thangaraj, “A Single Server Queue with Impatient and Feedback Customers”, Information and Management Sciences, 11:3 (2000), 71–79 | MR | Zbl

[23] B.K.Som, “Cost-profit analysis of stochastic heterogeneous queue with reverse balking, feedback and retention of impatient customers”, Reliability: Theory and Applications, 14:1(52) (2019), 87–101

[24] K.Wang, N.Li, Z.Jiang, Proceedings of 2010 IEEE International Conference on Service Operations and Logistics, and Informatics, 2010, 82–87 | DOI | MR | Zbl

[25] A.Nazarov, J.Sztrik, A.Kvach, Queueing Theory and Applications, ITMM 2017, CCIS, 800, eds. Dudin A., Nazarov A., 2017, 97–110 | DOI | Zbl

[26] T.Berczes, J.Sztrik, A.Toth, A.Nazarov, Information Technologies and Mathematical Modelling. Queueing Theory and Applications, ITMM 2017, CCIS, 800, eds. Dudin A., Nazarov A., 2017, 248–258 | DOI | MR