Anisotropic antiplane elastoplastic problem
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 13 (2020) no. 2, pp. 213-217
Cet article a éte moissonné depuis la source Math-Net.Ru
In this work we solve an anisotropic antiplane elastoplastic problem about stress state in a body weakened by a hole bounded by a piecewise-smooth contour. We give the conservation laws which allowed us to reduce calculations of stress components to a contour integral over the contour of the hole. The conservation laws allowed us to find the boundary between the elastic and plastic areas.
Keywords:
anisotropic elastoplastic problem, antiplane stress state, conservation laws.
@article{JSFU_2020_13_2_a7,
author = {Sergei I. Senashov and Irina L. Savostyanova and Olga N. Cherepanova},
title = {Anisotropic antiplane elastoplastic problem},
journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
pages = {213--217},
year = {2020},
volume = {13},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JSFU_2020_13_2_a7/}
}
TY - JOUR AU - Sergei I. Senashov AU - Irina L. Savostyanova AU - Olga N. Cherepanova TI - Anisotropic antiplane elastoplastic problem JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2020 SP - 213 EP - 217 VL - 13 IS - 2 UR - http://geodesic.mathdoc.fr/item/JSFU_2020_13_2_a7/ LA - en ID - JSFU_2020_13_2_a7 ER -
%0 Journal Article %A Sergei I. Senashov %A Irina L. Savostyanova %A Olga N. Cherepanova %T Anisotropic antiplane elastoplastic problem %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2020 %P 213-217 %V 13 %N 2 %U http://geodesic.mathdoc.fr/item/JSFU_2020_13_2_a7/ %G en %F JSFU_2020_13_2_a7
Sergei I. Senashov; Irina L. Savostyanova; Olga N. Cherepanova. Anisotropic antiplane elastoplastic problem. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 13 (2020) no. 2, pp. 213-217. http://geodesic.mathdoc.fr/item/JSFU_2020_13_2_a7/
[1] B.D.Annin, G.P.Cherepanov, Elastic-plastic problem, Nauka, Novosibirsk, 1983 (in Russian)
[2] S.G.Lehnitsky, Theory of elasticity of an anisotropic body, Nauka, M., 1977 (in Russian) | MR
[3] S.I.Senashov, A.M.Vinogradov, Proc. Edinburg Math. Soc., 31:3 (1988), 415–439 | DOI | MR | Zbl
[4] P.P.Kiryakov, S.I.Senashov, A.N.Yakhno, Application of symmetries and conservation laws to solving differential equations, Ros. Acad. nauk. Sib. otd., Novosibirsk, 2001 (in Russian) | MR
[5] S.I.Senashov, O.V.Gomonova, A.N.Yakhno, Mathematical problems of two-dimensional equations of ideal plasticity, Izd. SibGAU, Krasnoyarsk, 2012 (in Russian)