Anisotropic antiplane elastoplastic problem
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 13 (2020) no. 2, pp. 213-217.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this work we solve an anisotropic antiplane elastoplastic problem about stress state in a body weakened by a hole bounded by a piecewise-smooth contour. We give the conservation laws which allowed us to reduce calculations of stress components to a contour integral over the contour of the hole. The conservation laws allowed us to find the boundary between the elastic and plastic areas.
Keywords: anisotropic elastoplastic problem, antiplane stress state, conservation laws.
@article{JSFU_2020_13_2_a7,
     author = {Sergei I. Senashov and Irina L. Savostyanova and Olga N. Cherepanova},
     title = {Anisotropic antiplane elastoplastic problem},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {213--217},
     publisher = {mathdoc},
     volume = {13},
     number = {2},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2020_13_2_a7/}
}
TY  - JOUR
AU  - Sergei I. Senashov
AU  - Irina L. Savostyanova
AU  - Olga N. Cherepanova
TI  - Anisotropic antiplane elastoplastic problem
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2020
SP  - 213
EP  - 217
VL  - 13
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2020_13_2_a7/
LA  - en
ID  - JSFU_2020_13_2_a7
ER  - 
%0 Journal Article
%A Sergei I. Senashov
%A Irina L. Savostyanova
%A Olga N. Cherepanova
%T Anisotropic antiplane elastoplastic problem
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2020
%P 213-217
%V 13
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2020_13_2_a7/
%G en
%F JSFU_2020_13_2_a7
Sergei I. Senashov; Irina L. Savostyanova; Olga N. Cherepanova. Anisotropic antiplane elastoplastic problem. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 13 (2020) no. 2, pp. 213-217. http://geodesic.mathdoc.fr/item/JSFU_2020_13_2_a7/

[1] B.D.Annin, G.P.Cherepanov, Elastic-plastic problem, Nauka, Novosibirsk, 1983 (in Russian)

[2] S.G.Lehnitsky, Theory of elasticity of an anisotropic body, Nauka, M., 1977 (in Russian) | MR

[3] S.I.Senashov, A.M.Vinogradov, Proc. Edinburg Math. Soc., 31:3 (1988), 415–439 | DOI | MR | Zbl

[4] P.P.Kiryakov, S.I.Senashov, A.N.Yakhno, Application of symmetries and conservation laws to solving differential equations, Ros. Acad. nauk. Sib. otd., Novosibirsk, 2001 (in Russian) | MR

[5] S.I.Senashov, O.V.Gomonova, A.N.Yakhno, Mathematical problems of two-dimensional equations of ideal plasticity, Izd. SibGAU, Krasnoyarsk, 2012 (in Russian)