Rotationally-axisymmetric motion of a binary mixture with a flat free boundary at small Marangoni numbers
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 13 (2020) no. 2, pp. 197-212.

Voir la notice de l'article provenant de la source Math-Net.Ru

Rotationally-axisymmetric motion of a binary mixture with a flat free boundary at small Marangoni numbers is investigated. The problem is reduced to the inverse linear initial-boundary value problem for parabolic equations. Using Laplace transformation properties the exact analytical solution is obtained. It is shown that a stationary solution is the limiting one with the growth of time if there is a certain relationship between the temperature of the solid wall and the external temperature of the gas. If there is no connection, the convergence to the stationary solution is broken. Some examples of numerical reconstruction of the temperature, concentration and velocity fields are given, which confirm the theoretical conclusions.
Keywords: binary mixture, free boundary, inverse problem, the pressure gradient, the stationary solution, thermal Marangoni number.
Mots-clés : Laplace transformation
@article{JSFU_2020_13_2_a6,
     author = {Victor K. Andreev and Natalya L. Sobachkina},
     title = {Rotationally-axisymmetric motion of a binary mixture with a flat free boundary at small {Marangoni} numbers},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {197--212},
     publisher = {mathdoc},
     volume = {13},
     number = {2},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2020_13_2_a6/}
}
TY  - JOUR
AU  - Victor K. Andreev
AU  - Natalya L. Sobachkina
TI  - Rotationally-axisymmetric motion of a binary mixture with a flat free boundary at small Marangoni numbers
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2020
SP  - 197
EP  - 212
VL  - 13
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2020_13_2_a6/
LA  - en
ID  - JSFU_2020_13_2_a6
ER  - 
%0 Journal Article
%A Victor K. Andreev
%A Natalya L. Sobachkina
%T Rotationally-axisymmetric motion of a binary mixture with a flat free boundary at small Marangoni numbers
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2020
%P 197-212
%V 13
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2020_13_2_a6/
%G en
%F JSFU_2020_13_2_a6
Victor K. Andreev; Natalya L. Sobachkina. Rotationally-axisymmetric motion of a binary mixture with a flat free boundary at small Marangoni numbers. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 13 (2020) no. 2, pp. 197-212. http://geodesic.mathdoc.fr/item/JSFU_2020_13_2_a6/

[1] N.Darabi, “Two-dimensional motion of a binary mixture such as Hiemenz in a flat layer”, Journal of the Siberian Federal University. Mathematics and physics, 8:3 (2015), 260–272 | DOI | MR

[2] R.V.Birikh, J. Appl. Mech. Tech. Phys., 7 (1966), 43–44 | DOI

[3] A.G.Kirdyashkin, “Thermogravitational and thermocapillary convection in a horizontal fluid layer”, Fluid mechanics and transport processes in zero gravity, UNC of the USSR Academy of Sciences, Sverdlovsk, 1983, 81–86 (in Russian)

[4] A.G.Kirdyashkin, International Journal of Heat and Mass Transfer, 27:8 (1984), 1205–1218 | DOI

[5] A.G.Kirdyashkin, Thermocapillary periodic flows, Preprint No 8, IGiG SO AS USSR, Novosibirsk, 1985 (in Russian)

[6] A.F.Sidorov, J. Appl. Mech. Tech. Phys., 30 (1989), 197–203 | DOI | MR

[7] S.N.Aristov, K.G.Shvartz, Vortex flows of advective nature in a rotating liquid layer, PSU publishing House, Perm, 2006 (in Russian)

[8] O.N.Goncharova, O.A.Kabov, Microgravity Sci. Thechnol., 21 (2009), 129–137 | DOI

[9] V.K.Andreev, Birikh's Solution of convection equations and some of its generalizations, Preorint No 1–10, Institute of Computational Modeling SB RAS, Krasnoyarsk, 2010 (in Russian) | Zbl

[10] S.N.Aristov, K.G.Schwartz, Vortex flows in thin layers of liquid, VyatSU, Kirov, 2011 (in Russian)

[11] V.V.Pukhnachev, “Nonstationary analogs of the Birikh solution”, The Bulletin of Irkutsk State University. Series Mathematics, 3:1 (2011), 61–69 (in Russian)

[12] V.K.Andreev, V.B.Bekezhanova, J. Appl. Mech. Tech. Phys., 54 (2013), 171–184 | DOI | MR | Zbl

[13] S.N.Aristov, E.Yu.Prosviryakov, “On a class of analytical solutions for stationary axisymmetric Benard-Marangoni convection of a viscous incompressible fluid”, J. Samara State Tech. Univ., Ser. Phys. Math. Sci., 32:3 (2013), 110–118 (in Russian) | Zbl

[14] A.V.Gorshkov, E.Yu.Prosviryakov, Computer research and modeling, 8:6 (2016), 927–940 (in Russian) | DOI

[15] V.V.Privalova, E.Yu.Prosviryakov, “Couette–Hiemenz exact solutions for the steady creeping convective flow of a viscous incompressible fluid with allowance made for heat recovery”, J. Samara State Tech. Univ., Ser. Phys. Math. Sci., 22:3 (2018), 532–548 | Zbl

[16] K.Hiemenz, “Die Grenzschicht an einem in den gleichformigen Flussigkeitsstrom eingetauchten geraden Kreiszylinder”, Dinglers Politech. J., 326 (1911), 321

[17] V.K.Andreev, V.E.Zachvataev, E.A.Ryabitskiy, Thermocapillary instability, Nauka, Novosibirsk, 2000 (in Russian) | MR

[18] L.V.Ovsyannikov, Group analysis of differential equations, Nauka, M., 1978 (in Russian) | MR | Zbl

[19] M.A.Lavrentiev, B.V.Shabat, Methods of the theory of functions of a complex variable, Nauka, M., 1973 (in Russian) | MR

[20] M.Abramovits, I.Stigan, Handbook of special functions, Nauka, M., 1979 (in Russian)

[21] V.I.Krylov, N.S.Skoblya, Reference book on the numerical inversion of the Laplace transform, Science and technology, Minsk, 1968 (in Russian) | MR

[22] A.P.Prudnikov, V.A.Ditkin, Operational calculus, Higher school, M., 1975 (in Russian) | MR