The Cauchy problem for multidimensional difference equations in lattice cones
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 13 (2020) no. 2, pp. 187-196
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider a variant of the Cauchy problem for a multidimensional difference equation with constant coefficients, which connected with a lattice path problem in enumerative combinatorial analysis. We obtained a formula in which generating function of the solution to the Cauchy problem is expressed in terms of generating functions of the Cauchy data and a formula expressing solution to the Cauchy problem through its fundamental solution and Cauchy data.
Keywords:
difference equation, fundamental solution, generating function, Dyck paths.
@article{JSFU_2020_13_2_a5,
author = {Alexander P. Lyapin and Sreelatha Chandragiri},
title = {The {Cauchy} problem for multidimensional difference equations in lattice cones},
journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
pages = {187--196},
publisher = {mathdoc},
volume = {13},
number = {2},
year = {2020},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JSFU_2020_13_2_a5/}
}
TY - JOUR AU - Alexander P. Lyapin AU - Sreelatha Chandragiri TI - The Cauchy problem for multidimensional difference equations in lattice cones JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2020 SP - 187 EP - 196 VL - 13 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2020_13_2_a5/ LA - en ID - JSFU_2020_13_2_a5 ER -
%0 Journal Article %A Alexander P. Lyapin %A Sreelatha Chandragiri %T The Cauchy problem for multidimensional difference equations in lattice cones %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2020 %P 187-196 %V 13 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2020_13_2_a5/ %G en %F JSFU_2020_13_2_a5
Alexander P. Lyapin; Sreelatha Chandragiri. The Cauchy problem for multidimensional difference equations in lattice cones. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 13 (2020) no. 2, pp. 187-196. http://geodesic.mathdoc.fr/item/JSFU_2020_13_2_a5/