The Cauchy problem for multidimensional difference equations in lattice cones
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 13 (2020) no. 2, pp. 187-196.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a variant of the Cauchy problem for a multidimensional difference equation with constant coefficients, which connected with a lattice path problem in enumerative combinatorial analysis. We obtained a formula in which generating function of the solution to the Cauchy problem is expressed in terms of generating functions of the Cauchy data and a formula expressing solution to the Cauchy problem through its fundamental solution and Cauchy data.
Keywords: difference equation, fundamental solution, generating function, Dyck paths.
@article{JSFU_2020_13_2_a5,
     author = {Alexander P. Lyapin and Sreelatha Chandragiri},
     title = {The {Cauchy} problem for multidimensional difference equations in lattice cones},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {187--196},
     publisher = {mathdoc},
     volume = {13},
     number = {2},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2020_13_2_a5/}
}
TY  - JOUR
AU  - Alexander P. Lyapin
AU  - Sreelatha Chandragiri
TI  - The Cauchy problem for multidimensional difference equations in lattice cones
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2020
SP  - 187
EP  - 196
VL  - 13
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2020_13_2_a5/
LA  - en
ID  - JSFU_2020_13_2_a5
ER  - 
%0 Journal Article
%A Alexander P. Lyapin
%A Sreelatha Chandragiri
%T The Cauchy problem for multidimensional difference equations in lattice cones
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2020
%P 187-196
%V 13
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2020_13_2_a5/
%G en
%F JSFU_2020_13_2_a5
Alexander P. Lyapin; Sreelatha Chandragiri. The Cauchy problem for multidimensional difference equations in lattice cones. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 13 (2020) no. 2, pp. 187-196. http://geodesic.mathdoc.fr/item/JSFU_2020_13_2_a5/

[1] M.S.Apanovich, E.K.Leinartas, J. Sib. Fed. Univ. Math. Phys., 10:2 (2017), 199–205 | DOI | MR

[2] M.Bousquet-Mélou, M.Petkovšek, “Linear recurrences with constant coefficients: the multivariate case”, Discrete Mathematics, 225 (2000), 51–75 | DOI | MR | Zbl

[3] M.Brion, M.Vergne, J. American Math. Soc., 10:4 (1997), 797–833 | DOI | MR | Zbl

[4] S.Chandragiri, J. Sib. Fed. Univ. Math. Phys., 12:5 (2019), 551–559 | DOI | MR

[5] P.Duchon, “On the enumeration and generation of generalized Dyck words”, Discrete Math., 225 (2000), 121–135 | DOI | MR | Zbl

[6] S.N.Elaydi, An Introduction to Difference Equations, Undergraduate Texts in Mathematics, 3rd edn., Springer, New York, 2005 | MR | Zbl

[7] M.Forsberg, M.Passare, A.Tsikh, “Laurent determinants and arrangements of hyperplane amoebas”, Advances in Mathematics, 151:1 (2000), 45–70 | DOI | MR | Zbl

[8] I.M.Gessel, “A factorization for formal Laurent series and lattice path enumeration”, J. Combin. Theory. Ser. A, 28 (1980), 321–337 | DOI | MR

[9] J.Labelle, Y.N.Yeh, “Generalized Dyck paths”, Discrete Math., 82 (1990), 1–6 | DOI | MR | Zbl

[10] E.K.Leinartas, Siberian Mathematical Journal, 48:2 (2007), 268–272 | DOI | MR | Zbl

[11] E.K.Leinartas, A.P.Lyapin, “On the rationality of multidimensional recursive series”, J. Sib. Fed. Univ. Math. Phys., 2:4 (2009), 449–455 (in Russian)

[12] E.K.Leinartas, T.I.Nekrasova, Siberian Mathematical Journal, 57:2 (2016), 98–112 | DOI | MR | Zbl

[13] E.K.Leinartas, M.S.Rogozina, Siberian Mathematical Journal, 56:1 (2015), 92–100 | DOI | MR | Zbl

[14] A.P.Lyapin, “Riordan's Arrays and Two-dimensional Difference Equations”, J. Sib. Fed. Univ. Math. Phys., 2:2 (2009), 210–220

[15] A.P.Lyapin, S.Chandragiri, Journal of Difference Equations and Applications, 25:7 (2019), 1052–1061 | DOI | MR | Zbl

[16] A.V.Pukhlikov, A.G.Khovanskii, “The Riemann-Roch theorem for integrals and sums of quasipolynomials on virtual polytopes”, St. Petersburg Mathematical Journal, 4:4 (1993), 789–812 | MR

[17] R.Stanley, Enumerative combinatorics, Cambridge Univ. Press, Cambridge, 1999 | MR

[18] B.Sturmfels, Journal of Combinatorial Theory. Series A, 72 (1995), 302–309 | DOI | MR | Zbl

[19] T.I.Yakovleva, Siberian Mathematical Journal, 58:2 (2017), 363–372 | DOI | MR | Zbl