Singular quasilinear elliptic systems with (super-) homogeneous condition
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 13 (2020) no. 2, pp. 151-159.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we establish existence, nonexistence and regularity of positive solutions for a class of singular quasilinear elliptic systems subject to (super-) homogeneous condition. The approach is based on sub-supersolution methods for systems of quasilinear singular equations combined with perturbation arguments involving singular terms.
Keywords: singular system, $p$-Laplacian, sub-supersolution, regularity.
@article{JSFU_2020_13_2_a2,
     author = {Hana Didi and Brahim Khodja and Abdelkrim Moussaoui},
     title = {Singular quasilinear elliptic systems with (super-) homogeneous condition},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {151--159},
     publisher = {mathdoc},
     volume = {13},
     number = {2},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2020_13_2_a2/}
}
TY  - JOUR
AU  - Hana Didi
AU  - Brahim Khodja
AU  - Abdelkrim Moussaoui
TI  - Singular quasilinear elliptic systems with (super-) homogeneous condition
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2020
SP  - 151
EP  - 159
VL  - 13
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2020_13_2_a2/
LA  - en
ID  - JSFU_2020_13_2_a2
ER  - 
%0 Journal Article
%A Hana Didi
%A Brahim Khodja
%A Abdelkrim Moussaoui
%T Singular quasilinear elliptic systems with (super-) homogeneous condition
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2020
%P 151-159
%V 13
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2020_13_2_a2/
%G en
%F JSFU_2020_13_2_a2
Hana Didi; Brahim Khodja; Abdelkrim Moussaoui. Singular quasilinear elliptic systems with (super-) homogeneous condition. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 13 (2020) no. 2, pp. 151-159. http://geodesic.mathdoc.fr/item/JSFU_2020_13_2_a2/

[1] C.O.Alves, F.J.S.A.Corrêa, “On the existence of positive solution for a class of singular systems involving quasilinear operators”, Appl. Math. Comput., 185 (2007), 727–736 | MR | Zbl

[2] S.Boulaaras, R.Guefaifia, T.Bouali, “Existence of positive solutions for a class of quasilinear singular ellipticsystems involving Caffarelli-Kohn-Nirenberg exponent with sign-changing weight functions”, Indian J. Pure Appl. Math., 49:4 (2018), 705–715 | DOI | MR | Zbl

[3] S.Carl, V.K.Le, D.Motreanu, Nonsmooth variational problems and their inequalities. Comparaison principles and applications, Springer, New York, 2007 | MR

[4] Z.Deng, R.Zhang, Y.Huang, “Multiple symmetric results for singular quasilinear elliptic systems with critical homogeneous nonlinearity”, Math. Meth. App. Sci., 40:5 (2017), 1538–1552 | DOI | MR | Zbl

[5] P.Clément, J.Fleckinger, E.Mitidieri, F.de Thelin, “Existence of Positive Solutions for a Nonvariational Quasilinear Elliptic System”, J. Diff. Eqts., 166 (2000), 455–477 | DOI | MR

[6] C.Chen, “On positive weak solutions for a class of quasilinear elliptic systems”, Nonl. Anal., 62:4 (2005), 751–756 | DOI | MR | Zbl

[7] M.Ghergu, “Lane-Emden systems with negative exponents”, J. Funct. Anal., 258 (2010), 3295–3318 | DOI | MR | Zbl

[8] J.Giacomoni, J.Hernandez, A.Moussaoui, “Quasilinear and singular systems: the cooperative case”, Contemporary Math., 540, 2011, 79–94 | DOI | MR | Zbl

[9] J.Giacomoni, J.Hernandez, P.Sauvy, “Quasilinear and singular elliptic systems”, Advances Nonl. Anal., 2 (2013), 1–41 | MR | Zbl

[10] J.Giacomoni, I.Schindler, P.Takac, “Sobolev versus H ölder local minimizers and existence of multiple solutions for a singular quasilinear equation”, A. Sc. N. Sup. Pisa, 6:5 (2007), 117–158 | MR | Zbl

[11] D.D.Hai, “On a class of singular p-Laplacian boundary value problems”, J. Math. Anal. Appl., 383 (2011), 619–626 | DOI | MR | Zbl

[12] D.D.Hai, H.Wang, “Nontrivial solutions for $p$-Laplacian systems”, J. Math. Anal. Appl., 330 (2007), 186–194 | DOI | MR | Zbl

[13] J.Hernandez, F.J.Mancebo, J.M.Vega, “Positive solutions for singular semilinear elliptic systems”, Adv. Diff. Eqts., 13 (2008), 857–880 | MR | Zbl

[14] A.C.Lazer, P.J.Mckenna, “On a singular nonlinear elliptic boundary-value problem”, Proc. American Math. Soc., 111:3 (1991), 721–730 | DOI | MR | Zbl

[15] Y-H.Lee, X.Xu, “Global Existence Structure of Parameters for Positive Solutions of a Singular $(p_{1},p_{2})$-Laplacian System”, Bull. Malays. Math. Sci. Soc., 42:3 (2019), 1143–1159 | DOI | MR | Zbl

[16] G.M.Lieberman, “Boundary regularity for solutions of degenerate elliptic equations”, Nonlinear Anal., 12 (1988), 1203–1219 | DOI | MR | Zbl

[17] D.Motreanu, V.V.Motreanu, N.S.Papageorgiou, “Multiple constant sign and nodal solutions for Nonlinear Neumann eigenvalue problems”, Ann. Sc. Norm. Super. Pisa Cl. Sci., 10:5 (2011), 729–755 | MR | Zbl

[18] D.Motreanu, A.Moussaoui, “A quasilinear singular elliptic system without cooperative structure”, Act. Math. Sci., 34:3 (2014), 905–916 | DOI | MR | Zbl

[19] D.Motreanu, A.Moussaoui, “An existence result for a class of quasilinear singular competitive elliptic systems”, Applied Math. Letters, 38 (2014), 33–37 | DOI | MR | Zbl

[20] D.Motreanu, A.Moussaoui, Complex Variables and Elliptic Equations, 59 (2014), 285–296 | DOI | MR | Zbl

[21] A.Moussaoui, B.Khodja, S.Tas, “A singular Gierer-Meinhardt system of elliptic equations in $R^{N}$”, Nonlinear Anal., 71 (2009), 708–716 | DOI | MR | Zbl

[22] R.S.Rodrigues, “Positive solutions for classes of positone/semipositone systems with multiparameters”, Electronic Journal of Differential Equations, 192 (2013), 1–10 | MR