Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2020_13_2_a2, author = {Hana Didi and Brahim Khodja and Abdelkrim Moussaoui}, title = {Singular quasilinear elliptic systems with (super-) homogeneous condition}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {151--159}, publisher = {mathdoc}, volume = {13}, number = {2}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JSFU_2020_13_2_a2/} }
TY - JOUR AU - Hana Didi AU - Brahim Khodja AU - Abdelkrim Moussaoui TI - Singular quasilinear elliptic systems with (super-) homogeneous condition JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2020 SP - 151 EP - 159 VL - 13 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2020_13_2_a2/ LA - en ID - JSFU_2020_13_2_a2 ER -
%0 Journal Article %A Hana Didi %A Brahim Khodja %A Abdelkrim Moussaoui %T Singular quasilinear elliptic systems with (super-) homogeneous condition %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2020 %P 151-159 %V 13 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2020_13_2_a2/ %G en %F JSFU_2020_13_2_a2
Hana Didi; Brahim Khodja; Abdelkrim Moussaoui. Singular quasilinear elliptic systems with (super-) homogeneous condition. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 13 (2020) no. 2, pp. 151-159. http://geodesic.mathdoc.fr/item/JSFU_2020_13_2_a2/
[1] C.O.Alves, F.J.S.A.Corrêa, “On the existence of positive solution for a class of singular systems involving quasilinear operators”, Appl. Math. Comput., 185 (2007), 727–736 | MR | Zbl
[2] S.Boulaaras, R.Guefaifia, T.Bouali, “Existence of positive solutions for a class of quasilinear singular ellipticsystems involving Caffarelli-Kohn-Nirenberg exponent with sign-changing weight functions”, Indian J. Pure Appl. Math., 49:4 (2018), 705–715 | DOI | MR | Zbl
[3] S.Carl, V.K.Le, D.Motreanu, Nonsmooth variational problems and their inequalities. Comparaison principles and applications, Springer, New York, 2007 | MR
[4] Z.Deng, R.Zhang, Y.Huang, “Multiple symmetric results for singular quasilinear elliptic systems with critical homogeneous nonlinearity”, Math. Meth. App. Sci., 40:5 (2017), 1538–1552 | DOI | MR | Zbl
[5] P.Clément, J.Fleckinger, E.Mitidieri, F.de Thelin, “Existence of Positive Solutions for a Nonvariational Quasilinear Elliptic System”, J. Diff. Eqts., 166 (2000), 455–477 | DOI | MR
[6] C.Chen, “On positive weak solutions for a class of quasilinear elliptic systems”, Nonl. Anal., 62:4 (2005), 751–756 | DOI | MR | Zbl
[7] M.Ghergu, “Lane-Emden systems with negative exponents”, J. Funct. Anal., 258 (2010), 3295–3318 | DOI | MR | Zbl
[8] J.Giacomoni, J.Hernandez, A.Moussaoui, “Quasilinear and singular systems: the cooperative case”, Contemporary Math., 540, 2011, 79–94 | DOI | MR | Zbl
[9] J.Giacomoni, J.Hernandez, P.Sauvy, “Quasilinear and singular elliptic systems”, Advances Nonl. Anal., 2 (2013), 1–41 | MR | Zbl
[10] J.Giacomoni, I.Schindler, P.Takac, “Sobolev versus H ölder local minimizers and existence of multiple solutions for a singular quasilinear equation”, A. Sc. N. Sup. Pisa, 6:5 (2007), 117–158 | MR | Zbl
[11] D.D.Hai, “On a class of singular p-Laplacian boundary value problems”, J. Math. Anal. Appl., 383 (2011), 619–626 | DOI | MR | Zbl
[12] D.D.Hai, H.Wang, “Nontrivial solutions for $p$-Laplacian systems”, J. Math. Anal. Appl., 330 (2007), 186–194 | DOI | MR | Zbl
[13] J.Hernandez, F.J.Mancebo, J.M.Vega, “Positive solutions for singular semilinear elliptic systems”, Adv. Diff. Eqts., 13 (2008), 857–880 | MR | Zbl
[14] A.C.Lazer, P.J.Mckenna, “On a singular nonlinear elliptic boundary-value problem”, Proc. American Math. Soc., 111:3 (1991), 721–730 | DOI | MR | Zbl
[15] Y-H.Lee, X.Xu, “Global Existence Structure of Parameters for Positive Solutions of a Singular $(p_{1},p_{2})$-Laplacian System”, Bull. Malays. Math. Sci. Soc., 42:3 (2019), 1143–1159 | DOI | MR | Zbl
[16] G.M.Lieberman, “Boundary regularity for solutions of degenerate elliptic equations”, Nonlinear Anal., 12 (1988), 1203–1219 | DOI | MR | Zbl
[17] D.Motreanu, V.V.Motreanu, N.S.Papageorgiou, “Multiple constant sign and nodal solutions for Nonlinear Neumann eigenvalue problems”, Ann. Sc. Norm. Super. Pisa Cl. Sci., 10:5 (2011), 729–755 | MR | Zbl
[18] D.Motreanu, A.Moussaoui, “A quasilinear singular elliptic system without cooperative structure”, Act. Math. Sci., 34:3 (2014), 905–916 | DOI | MR | Zbl
[19] D.Motreanu, A.Moussaoui, “An existence result for a class of quasilinear singular competitive elliptic systems”, Applied Math. Letters, 38 (2014), 33–37 | DOI | MR | Zbl
[20] D.Motreanu, A.Moussaoui, Complex Variables and Elliptic Equations, 59 (2014), 285–296 | DOI | MR | Zbl
[21] A.Moussaoui, B.Khodja, S.Tas, “A singular Gierer-Meinhardt system of elliptic equations in $R^{N}$”, Nonlinear Anal., 71 (2009), 708–716 | DOI | MR | Zbl
[22] R.S.Rodrigues, “Positive solutions for classes of positone/semipositone systems with multiparameters”, Electronic Journal of Differential Equations, 192 (2013), 1–10 | MR