Minimal proper quasifields with additional conditions
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 13 (2020) no. 1, pp. 104-113
Voir la notice de l'article provenant de la source Math-Net.Ru
We investigate the finite semifields which are distributive quasifields, and finite near-fields which are associative quasifields.
A quasifield $Q$ is said to be a minimal proper quasifield if any of its sub-quasifield $H\ne Q$ is a subfield.
It turns out that there exists a minimal proper near-field such that its multiplicative group is a Miller–Moreno group.
We obtain an algorithm for constructing a minimal proper near-field with the number of maximal subfields greater than fixed natural number.
Thus, we find the answer to the question:
Does there exist an integer $N$ such that the number of
maximal subfields in arbitrary finite near-field is less than
$N$?
We prove that any semifield of order $p^4$ ($p$ be prime) is a minimal proper semifield.
Keywords:
quasifield, semifield, near-field, subfield.
@article{JSFU_2020_13_1_a9,
author = {Olga V. Kravtsova},
title = {Minimal proper quasifields with additional conditions},
journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
pages = {104--113},
publisher = {mathdoc},
volume = {13},
number = {1},
year = {2020},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JSFU_2020_13_1_a9/}
}
TY - JOUR AU - Olga V. Kravtsova TI - Minimal proper quasifields with additional conditions JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2020 SP - 104 EP - 113 VL - 13 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2020_13_1_a9/ LA - en ID - JSFU_2020_13_1_a9 ER -
Olga V. Kravtsova. Minimal proper quasifields with additional conditions. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 13 (2020) no. 1, pp. 104-113. http://geodesic.mathdoc.fr/item/JSFU_2020_13_1_a9/