Hypergeometric series and the Mellin--Barnes integrals for zeros of a system of Laurent polynomials
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 13 (2020) no. 1, pp. 87-96.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the article we present a criterion for convergence of the Mellin–Barnes integral for zeros of a system of Laurent polynomials. Also we give a hypergeometric series for these zeros.
Keywords: Mellin–Barnes integrals, hypergeometric series
Mots-clés : Laurent polynomials.
@article{JSFU_2020_13_1_a7,
     author = {Vladimir R. Kulikov},
     title = {Hypergeometric series and the {Mellin--Barnes} integrals for zeros of a system of {Laurent} polynomials},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {87--96},
     publisher = {mathdoc},
     volume = {13},
     number = {1},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2020_13_1_a7/}
}
TY  - JOUR
AU  - Vladimir R. Kulikov
TI  - Hypergeometric series and the Mellin--Barnes integrals for zeros of a system of Laurent polynomials
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2020
SP  - 87
EP  - 96
VL  - 13
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2020_13_1_a7/
LA  - en
ID  - JSFU_2020_13_1_a7
ER  - 
%0 Journal Article
%A Vladimir R. Kulikov
%T Hypergeometric series and the Mellin--Barnes integrals for zeros of a system of Laurent polynomials
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2020
%P 87-96
%V 13
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2020_13_1_a7/
%G en
%F JSFU_2020_13_1_a7
Vladimir R. Kulikov. Hypergeometric series and the Mellin--Barnes integrals for zeros of a system of Laurent polynomials. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 13 (2020) no. 1, pp. 87-96. http://geodesic.mathdoc.fr/item/JSFU_2020_13_1_a7/

[1] L. Nilsson, Amoebas, Discriminants, and Hypergeometric Functions, Doctoral Thesis, Stockholm University, Sweden, 2009

[2] I.A. Antipova, Siberian Math. J., 44:5 (2003), 757–764 | DOI | MR | Zbl

[3] I.A. Antipova, Sb. Math., 198:4 (2007), 447–463 | DOI | MR | Zbl

[4] V.A. Stepanenko, Vestn. KrasGU, 1 (2003), 35–48 (in Russian)

[5] T.M. Sadykov, A.K. Tsikh, Hypergeometric and Algebraic Functions in Several Variables, Nauka, M., 2014 (in Russian)

[6] V.V. Prasolov, Problems and Theorems in Linear Algebra, Amer. Math. Soc., Providence, 1994 | MR

[7] O.N. Zhdanov, A.K. Tsikh, Siberian Math. J., 39:2 (1998), 245–260 | DOI | MR | Zbl

[8] M. Passare, A. Tsikh, O. Zhdanov, “A multidimentional Jordan residue lemma with an application to Mellin-Barnes integrals”, Contributions to complex analysis and analytic geometry, Aspects Math. E, 26, Vieweg, Braunschweig, 1994, 233–241 ; 47, no. 2, 2006, 365–371 | DOI | MR | Zbl

[9] V.R. Kulikov, Siberian Math. J., 58:3 (2017), 493–499 | DOI | MR | Zbl

[10] V.R. Kulikov, V.A. Stepanenko, St. Petersburg Math. J., 26:5 (2015), 839–848 | DOI | MR | Zbl

[11] I. Antipova, E. Kleshkova, V. Kulikov, Analytic continuation for solutions to the system of trinomial algebraic equations, 2019, arXiv: 1905.01033v1 [math.CV]