Fundamental solutions for a class of multidimensional elliptic equations with several singular coefficients
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 13 (2020) no. 1, pp. 48-57.

Voir la notice de l'article provenant de la source Math-Net.Ru

The main result of the present paper is the construction of fundamental solutions for a class of multidimensional elliptic equations with several singular coefficients. These fundamental solutions are directly connected with multiple hypergeometric functions and the decomposition formula is required for their investigation which would express the multivariable hypergeometric function in terms of products of several simpler hypergeometric functions involving fewer variables. In this paper, such a formula is proved instead of a previously existing recurrence formula.The order of singularity and other properties of the fundamental solutions that are necessary for solving boundary value problems for degenerate second-order elliptic equations are determined.
Keywords: multidimensional elliptic equation with several singular coefficients, fundamental solutions
Mots-clés : decomposition formula.
@article{JSFU_2020_13_1_a3,
     author = {Tuhtasin G. Ergashev},
     title = {Fundamental solutions for a class of multidimensional elliptic equations with several singular coefficients},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {48--57},
     publisher = {mathdoc},
     volume = {13},
     number = {1},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2020_13_1_a3/}
}
TY  - JOUR
AU  - Tuhtasin G. Ergashev
TI  - Fundamental solutions for a class of multidimensional elliptic equations with several singular coefficients
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2020
SP  - 48
EP  - 57
VL  - 13
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2020_13_1_a3/
LA  - en
ID  - JSFU_2020_13_1_a3
ER  - 
%0 Journal Article
%A Tuhtasin G. Ergashev
%T Fundamental solutions for a class of multidimensional elliptic equations with several singular coefficients
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2020
%P 48-57
%V 13
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2020_13_1_a3/
%G en
%F JSFU_2020_13_1_a3
Tuhtasin G. Ergashev. Fundamental solutions for a class of multidimensional elliptic equations with several singular coefficients. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 13 (2020) no. 1, pp. 48-57. http://geodesic.mathdoc.fr/item/JSFU_2020_13_1_a3/

[1] J.J. Barros-Neto, I.M. Gelfand, Duke Math. J., 98:3 (1999), 465–483 | DOI | MR | Zbl

[2] J.J. Barros-Neto, I.M. Gelfand, Duke Math. J., 111:3 (2001), 561–584 | MR

[3] J.J. Barros-Neto, I.M. Gelfand, Duke Math. J., 128:1 (2005), 119–140 | DOI | MR | Zbl

[4] A. Hasanov, E.T. Karimov, Applied Mathematic Letters, 22 (2009), 1828–1832 | DOI | MR | Zbl

[5] M. Itagaki, Eng. Anal. Bound. Elem., 15:3 (1995), 289–293 | DOI

[6] T.G. Ergashev, A. Hasanov, Uzbek Math. J., 1 (2018), 55–64 | DOI | MR

[7] R.M. Mavlyaviev, Russian Mathematics, 61:6 (2017), 60–65 | DOI | MR | Zbl

[8] R.M. Mavlyaviev, I.B. Garipov, Complex Variables and elliptic equations, 62:3 (2017), 287–296 | DOI | MR | Zbl

[9] T.G. Ergashev, Tomsk State University. Journal of Mathematics and Mechanics, 50 (2017), 45–56 (in Russian) | DOI

[10] M.A. Golberg, C.S. Chen, “The method of fundamental solutions for potential, Helmholtz and diffusion problems”, Boundary Integral Methods-Numerical and Mathematical Aspects, ed. Golberg M. A., Comput. Mech. Publ., 1998, 103–176 | MR

[11] E.T. Karimov, “A boundary-value problem for 3-D elliptic equation with singular coefficients”, Progress in analysis and its applications, 2010, 619–625 | DOI | MR | Zbl

[12] E.T. Karimov, J.J. Nieto, Computers and Mathematics with Applications, 62 (2011), 214–224 | DOI | MR | Zbl

[13] M.S. Salakhitdinov, A. Hasanov, Uzbek Math. Journal, 3 (2007), 95–109 (in Russian) | DOI | Zbl

[14] M.S. Salakhitdinov, A. Hasanov, Complex Variables and Elliptic Equations, 53:4 (2008), 355–364 | DOI | MR | Zbl

[15] H.M. Srivastava, A. Hasanov, J. Choi, Sohag J. Math., 2:1 (2015), 1–10 | DOI

[16] E.L. Shishkina, S.M. Sitnik, Electronic Journal of Differential Equations (EJDE), 177 (2017), 1–20

[17] S.M. Sitnik, Kh. Mehrez, Analysis (De Gruyter), 36:4 (2016), 263–268 | MR | Zbl

[18] A. Altin, Proc. Amer. Math. Soc., 85:1 (1982), 42–46 | DOI | MR | Zbl

[19] A.J. Fryant, J. Differential Equations, 31:2 (1979), 155–164 | DOI | MR | Zbl

[20] A. Hasanov, Complex Variables and Elliptic Equation, 52:8 (2007), 673–683 | DOI | MR | Zbl

[21] P. Kumar, Fasc. Math., 35 (2005), 51–60 | Zbl

[22] P.A. McCoy, Canad. J. Math., 31:1 (1979), 49–59 | DOI | MR | Zbl

[23] N. Radzhabov, “Integral representations and boundary value problems for an equation of Helmholtz type with several singular surfaces”, Analytic methods in the theory of elliptic equations, Nauka, Sibirk. Otdel., Novosibirsk, 1982, 34–46 (in Russian) | MR

[24] A.K. Urinov, E.T. Karimov, Applied Mathematic Letters, 24 (2011), 314–319 | DOI | MR | Zbl

[25] R.J. Weinacht, Contrib. Differential Equations, 3 (1964), 43–55 | MR | Zbl

[26] A. Weinstein, “Potential theory”, Trans. Amer. Math. Soc., 63 (1946), 342–354 | DOI | MR

[27] A. Weinstein, Bull. Amer. Math. Soc., 59 (1953), 20–38 | DOI | MR | Zbl

[28] P. Appell, J. Kampe de Feriet, Fonctions Hypergeometriques et Hyperspheriques; Polynomes d'Hermite, Gauthier-Villars, Paris, 1926 | Zbl

[29] A. Hasanov, H.M. Srivastava, Applied Mathematic Letters, 19:2 (2006), 113–121 | DOI | MR | Zbl

[30] A. Hasanov, H.M. Srivastava, Computers $\$ Mathematics with Applications, 53:7 (2007), 1119–1128 | DOI | MR | Zbl

[31] A. Erdelyi, W. Magnus, F. Oberhettinger, F.G. Tricomi, Higher Transcendental Functions, v. I, McGraw-Hill Book Company, New York–Toronto–London, 1953 | MR

[32] H.M. Srivastava, P.W. Karlsson, Multiple Gaussian Hypergeometric Series, Halsted Press, New York–Chichester–Brisbane–Toronto, 1985 | MR | Zbl

[33] J.L. Burchnall, T.W. Chaundy, The Quarterly Journal of Mathematics, Oxford, Ser. 11, 1940, 249–270 | DOI | MR

[34] J.L. Burchnall, T.W. Chaundy, The Quarterly Journal of Mathematics, Oxford, Ser. 12, 1941, 112–128 | DOI | MR