Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2020_13_1_a3, author = {Tuhtasin G. Ergashev}, title = {Fundamental solutions for a class of multidimensional elliptic equations with several singular coefficients}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {48--57}, publisher = {mathdoc}, volume = {13}, number = {1}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JSFU_2020_13_1_a3/} }
TY - JOUR AU - Tuhtasin G. Ergashev TI - Fundamental solutions for a class of multidimensional elliptic equations with several singular coefficients JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2020 SP - 48 EP - 57 VL - 13 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2020_13_1_a3/ LA - en ID - JSFU_2020_13_1_a3 ER -
%0 Journal Article %A Tuhtasin G. Ergashev %T Fundamental solutions for a class of multidimensional elliptic equations with several singular coefficients %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2020 %P 48-57 %V 13 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2020_13_1_a3/ %G en %F JSFU_2020_13_1_a3
Tuhtasin G. Ergashev. Fundamental solutions for a class of multidimensional elliptic equations with several singular coefficients. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 13 (2020) no. 1, pp. 48-57. http://geodesic.mathdoc.fr/item/JSFU_2020_13_1_a3/
[1] J.J. Barros-Neto, I.M. Gelfand, Duke Math. J., 98:3 (1999), 465–483 | DOI | MR | Zbl
[2] J.J. Barros-Neto, I.M. Gelfand, Duke Math. J., 111:3 (2001), 561–584 | MR
[3] J.J. Barros-Neto, I.M. Gelfand, Duke Math. J., 128:1 (2005), 119–140 | DOI | MR | Zbl
[4] A. Hasanov, E.T. Karimov, Applied Mathematic Letters, 22 (2009), 1828–1832 | DOI | MR | Zbl
[5] M. Itagaki, Eng. Anal. Bound. Elem., 15:3 (1995), 289–293 | DOI
[6] T.G. Ergashev, A. Hasanov, Uzbek Math. J., 1 (2018), 55–64 | DOI | MR
[7] R.M. Mavlyaviev, Russian Mathematics, 61:6 (2017), 60–65 | DOI | MR | Zbl
[8] R.M. Mavlyaviev, I.B. Garipov, Complex Variables and elliptic equations, 62:3 (2017), 287–296 | DOI | MR | Zbl
[9] T.G. Ergashev, Tomsk State University. Journal of Mathematics and Mechanics, 50 (2017), 45–56 (in Russian) | DOI
[10] M.A. Golberg, C.S. Chen, “The method of fundamental solutions for potential, Helmholtz and diffusion problems”, Boundary Integral Methods-Numerical and Mathematical Aspects, ed. Golberg M. A., Comput. Mech. Publ., 1998, 103–176 | MR
[11] E.T. Karimov, “A boundary-value problem for 3-D elliptic equation with singular coefficients”, Progress in analysis and its applications, 2010, 619–625 | DOI | MR | Zbl
[12] E.T. Karimov, J.J. Nieto, Computers and Mathematics with Applications, 62 (2011), 214–224 | DOI | MR | Zbl
[13] M.S. Salakhitdinov, A. Hasanov, Uzbek Math. Journal, 3 (2007), 95–109 (in Russian) | DOI | Zbl
[14] M.S. Salakhitdinov, A. Hasanov, Complex Variables and Elliptic Equations, 53:4 (2008), 355–364 | DOI | MR | Zbl
[15] H.M. Srivastava, A. Hasanov, J. Choi, Sohag J. Math., 2:1 (2015), 1–10 | DOI
[16] E.L. Shishkina, S.M. Sitnik, Electronic Journal of Differential Equations (EJDE), 177 (2017), 1–20
[17] S.M. Sitnik, Kh. Mehrez, Analysis (De Gruyter), 36:4 (2016), 263–268 | MR | Zbl
[18] A. Altin, Proc. Amer. Math. Soc., 85:1 (1982), 42–46 | DOI | MR | Zbl
[19] A.J. Fryant, J. Differential Equations, 31:2 (1979), 155–164 | DOI | MR | Zbl
[20] A. Hasanov, Complex Variables and Elliptic Equation, 52:8 (2007), 673–683 | DOI | MR | Zbl
[21] P. Kumar, Fasc. Math., 35 (2005), 51–60 | Zbl
[22] P.A. McCoy, Canad. J. Math., 31:1 (1979), 49–59 | DOI | MR | Zbl
[23] N. Radzhabov, “Integral representations and boundary value problems for an equation of Helmholtz type with several singular surfaces”, Analytic methods in the theory of elliptic equations, Nauka, Sibirk. Otdel., Novosibirsk, 1982, 34–46 (in Russian) | MR
[24] A.K. Urinov, E.T. Karimov, Applied Mathematic Letters, 24 (2011), 314–319 | DOI | MR | Zbl
[25] R.J. Weinacht, Contrib. Differential Equations, 3 (1964), 43–55 | MR | Zbl
[26] A. Weinstein, “Potential theory”, Trans. Amer. Math. Soc., 63 (1946), 342–354 | DOI | MR
[27] A. Weinstein, Bull. Amer. Math. Soc., 59 (1953), 20–38 | DOI | MR | Zbl
[28] P. Appell, J. Kampe de Feriet, Fonctions Hypergeometriques et Hyperspheriques; Polynomes d'Hermite, Gauthier-Villars, Paris, 1926 | Zbl
[29] A. Hasanov, H.M. Srivastava, Applied Mathematic Letters, 19:2 (2006), 113–121 | DOI | MR | Zbl
[30] A. Hasanov, H.M. Srivastava, Computers $\$ Mathematics with Applications, 53:7 (2007), 1119–1128 | DOI | MR | Zbl
[31] A. Erdelyi, W. Magnus, F. Oberhettinger, F.G. Tricomi, Higher Transcendental Functions, v. I, McGraw-Hill Book Company, New York–Toronto–London, 1953 | MR
[32] H.M. Srivastava, P.W. Karlsson, Multiple Gaussian Hypergeometric Series, Halsted Press, New York–Chichester–Brisbane–Toronto, 1985 | MR | Zbl
[33] J.L. Burchnall, T.W. Chaundy, The Quarterly Journal of Mathematics, Oxford, Ser. 11, 1940, 249–270 | DOI | MR
[34] J.L. Burchnall, T.W. Chaundy, The Quarterly Journal of Mathematics, Oxford, Ser. 12, 1941, 112–128 | DOI | MR