Analytic continuation for solutions to the system of trinomial algebraic equations
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 13 (2020) no. 1, pp. 114-130.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper, we deal with the problem of getting analytic continuations for the monomial function associated with a solution to the reduced trinomial algebraic system. In particular, we develop the idea of applying the Mellin–Barnes integral representation of the monomial function for solving the extension problem and demonstrate how to achieve the same result following the fact that the solution to the universal trinomial system is polyhomogeneous. As a main result, we construct Puiseux expansions (centred at the origin) representing analytic continuations of the monomial function.
Keywords: analytic continuation, Mellin–Barnes integral.
Mots-clés : algebraic equation, Puiseux series, discriminant locus
@article{JSFU_2020_13_1_a10,
     author = {Irina A. Antipova and Ekaterina A. Kleshkova and Vladimir R. Kulikov},
     title = {Analytic continuation for solutions to the system of trinomial algebraic equations},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {114--130},
     publisher = {mathdoc},
     volume = {13},
     number = {1},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2020_13_1_a10/}
}
TY  - JOUR
AU  - Irina A. Antipova
AU  - Ekaterina A. Kleshkova
AU  - Vladimir R. Kulikov
TI  - Analytic continuation for solutions to the system of trinomial algebraic equations
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2020
SP  - 114
EP  - 130
VL  - 13
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2020_13_1_a10/
LA  - en
ID  - JSFU_2020_13_1_a10
ER  - 
%0 Journal Article
%A Irina A. Antipova
%A Ekaterina A. Kleshkova
%A Vladimir R. Kulikov
%T Analytic continuation for solutions to the system of trinomial algebraic equations
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2020
%P 114-130
%V 13
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2020_13_1_a10/
%G en
%F JSFU_2020_13_1_a10
Irina A. Antipova; Ekaterina A. Kleshkova; Vladimir R. Kulikov. Analytic continuation for solutions to the system of trinomial algebraic equations. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 13 (2020) no. 1, pp. 114-130. http://geodesic.mathdoc.fr/item/JSFU_2020_13_1_a10/

[1] I.A. Antipova, Siberian Math. J., 44:5 (2003), 757–764 | DOI | MR | Zbl

[2] I.A. Antipova, Sb. Math., 198:4 (2007), 447–463 | DOI | MR | Zbl

[3] I.A. Antipova, E.N. Mikhalkin, Proc. Steklov Inst. Math., 279 (2012), 3–13 | DOI | MR | Zbl

[4] I.A. Antipova, A.K. Tsikh, Izv. Math., 76:5 (2012), 881–906 | DOI | MR | Zbl

[5] L.A. Aizenberg, A.P. Yuzhakov, Integral representations and residues in multidimensional complex analysis, Translations of Mathematical Monographs, 58, AMS, Providence, 1983 | DOI | MR | Zbl

[6] F. Aroca, V.M. Saavedra, “Puiseux Parametric Equations via the Amoeba of the Discriminant”, Singularities in Geometry, Topology, Foliations and Dinamics, Trends in Mathematics Birkhauser, eds. Cisneros-Molina J. at al., Cham, 2017 | MR

[7] V.R. Kulikov, Siberian Math. J., 58:3 (2017), 493–499 | DOI | MR | Zbl

[8] V.R. Kulikov, V.A. Stepanenko, St. Petersburg Math. J., 26:5 (2015), 839–848 | DOI | MR | Zbl

[9] Hj. Mellin, “Solving the general algebraic equation using the function $\Gamma$ (Résolution de l'équation algébrigue général à l'aide de la fonction $\Gamma$)”, C.R. Acad. Sci., 172 (1921), 658–661 | Zbl

[10] M. Passare, T.M. Sadykov, A.K. Tsikh, Compos. Math., 141:3 (2005), 787–810 | DOI | MR | Zbl

[11] V.V. Prasolov, Problems and theorems in linear algebra, Translations of Mathematical Monographs, 134, American Mathematical Society, Providence, RI, 1994 | DOI | MR

[12] V. Puiseux, J. de math. pures et appl., 15 (1850), 365–480

[13] T.M. Sadykov, A.K. Tsikh, Hypergeometric and algebraic functions in several variables, Nauka, M., 2014 (in Russian)

[14] V.A. Stepanenko, On hypergeometric functions, Vestnik Krasnoyar. Gosudarst. Univer., 1 (2003), 35–48 (in Russian)

[15] T. Theobald, T. de Wolff, “Norms of Roots of Trinomials”, Math. Ann., 366 (2016), 219–247 | DOI | MR | Zbl

[16] A.K. Tsikh, Multidimensional residues and their applications, Amer. Math. Soc., Providence, RI, 1992 | MR | Zbl

[17] O.N. Zhdanov, A.K. Tsikh, Siberian Math. J., 39:2 (1998), 245–260 | DOI | MR | Zbl