On the asymptotic behavior of the conjugate problem describing a creeping axisymmetric thermocapillary motion
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 13 (2020) no. 1, pp. 26-36
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper the conditions for the law of temperature behavior on a solid cylinder wall describes, under which the solution of a linear conjugate inverse initial-boundary value problem describing a two-layer axisymmetric creeping motion of viscous heat-conducting fluids tends to zero exponentially with increases of time.
Keywords:
the conjugate nonlinear inverse problem, a crawling motion.
Mots-clés : interface
Mots-clés : interface
@article{JSFU_2020_13_1_a1,
author = {Victor K. Andreev and Evgeniy P. Magdenko},
title = {On the asymptotic behavior of the conjugate problem describing a creeping axisymmetric thermocapillary motion},
journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
pages = {26--36},
publisher = {mathdoc},
volume = {13},
number = {1},
year = {2020},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JSFU_2020_13_1_a1/}
}
TY - JOUR AU - Victor K. Andreev AU - Evgeniy P. Magdenko TI - On the asymptotic behavior of the conjugate problem describing a creeping axisymmetric thermocapillary motion JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2020 SP - 26 EP - 36 VL - 13 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2020_13_1_a1/ LA - en ID - JSFU_2020_13_1_a1 ER -
%0 Journal Article %A Victor K. Andreev %A Evgeniy P. Magdenko %T On the asymptotic behavior of the conjugate problem describing a creeping axisymmetric thermocapillary motion %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2020 %P 26-36 %V 13 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2020_13_1_a1/ %G en %F JSFU_2020_13_1_a1
Victor K. Andreev; Evgeniy P. Magdenko. On the asymptotic behavior of the conjugate problem describing a creeping axisymmetric thermocapillary motion. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 13 (2020) no. 1, pp. 26-36. http://geodesic.mathdoc.fr/item/JSFU_2020_13_1_a1/