A degree theory for Lagrangian boundary value problems
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 13 (2020) no. 1, pp. 5-25
Voir la notice de l'article provenant de la source Math-Net.Ru
We study those nonlinear partial differential equations which appear as Euler–Lagrange equations of variational problems.
On defining weak boundary values of solutions to such equations we initiate the theory of Lagrangian boundary value problems in spaces of appropriate smoothness.
We also analyse if the concept of mapping degree of current importance applies to Lagrangian problems.
Keywords:
nonlinear equations, Lagrangian system, weak boundary values, quasilinear Fredholm operators, mapping degree.
@article{JSFU_2020_13_1_a0,
author = {Ammar Alsaedy and Nikolai Tarkhanov},
title = {A degree theory for {Lagrangian} boundary value problems},
journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
pages = {5--25},
publisher = {mathdoc},
volume = {13},
number = {1},
year = {2020},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JSFU_2020_13_1_a0/}
}
TY - JOUR AU - Ammar Alsaedy AU - Nikolai Tarkhanov TI - A degree theory for Lagrangian boundary value problems JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2020 SP - 5 EP - 25 VL - 13 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2020_13_1_a0/ LA - en ID - JSFU_2020_13_1_a0 ER -
%0 Journal Article %A Ammar Alsaedy %A Nikolai Tarkhanov %T A degree theory for Lagrangian boundary value problems %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2020 %P 5-25 %V 13 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2020_13_1_a0/ %G en %F JSFU_2020_13_1_a0
Ammar Alsaedy; Nikolai Tarkhanov. A degree theory for Lagrangian boundary value problems. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 13 (2020) no. 1, pp. 5-25. http://geodesic.mathdoc.fr/item/JSFU_2020_13_1_a0/