A degree theory for Lagrangian boundary value problems
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 13 (2020) no. 1, pp. 5-25.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study those nonlinear partial differential equations which appear as Euler–Lagrange equations of variational problems. On defining weak boundary values of solutions to such equations we initiate the theory of Lagrangian boundary value problems in spaces of appropriate smoothness. We also analyse if the concept of mapping degree of current importance applies to Lagrangian problems.
Keywords: nonlinear equations, Lagrangian system, weak boundary values, quasilinear Fredholm operators, mapping degree.
@article{JSFU_2020_13_1_a0,
     author = {Ammar Alsaedy and Nikolai Tarkhanov},
     title = {A degree theory for {Lagrangian} boundary value problems},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {5--25},
     publisher = {mathdoc},
     volume = {13},
     number = {1},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2020_13_1_a0/}
}
TY  - JOUR
AU  - Ammar Alsaedy
AU  - Nikolai Tarkhanov
TI  - A degree theory for Lagrangian boundary value problems
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2020
SP  - 5
EP  - 25
VL  - 13
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2020_13_1_a0/
LA  - en
ID  - JSFU_2020_13_1_a0
ER  - 
%0 Journal Article
%A Ammar Alsaedy
%A Nikolai Tarkhanov
%T A degree theory for Lagrangian boundary value problems
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2020
%P 5-25
%V 13
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2020_13_1_a0/
%G en
%F JSFU_2020_13_1_a0
Ammar Alsaedy; Nikolai Tarkhanov. A degree theory for Lagrangian boundary value problems. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 13 (2020) no. 1, pp. 5-25. http://geodesic.mathdoc.fr/item/JSFU_2020_13_1_a0/

[1] A. Alsaedy, N. Tarkhanov, Journal of Complex Analysis, 2013, 486934, 11 pp. | DOI | MR | Zbl

[2] A. Alsaedy, N. Tarkhanov, Nonlinear Analysis: Theory, Methods and Applications, 95 (2014), 468–482 | DOI | MR | Zbl

[3] A.V. Babin, Math. USSR Sb., 22 (1974), 427–454 | DOI

[4] P. Benevieri, M. Furi, Ann. Sci. Math. Québec, 22:2 (1998), 131–148 | MR | Zbl

[5] P. Benevieri, M. Furi, M.P. Pera, M. Spadini, Zeitschrift für Analysis und ihre Anwendungen, 22:3 (2003), 619–645 | DOI | Zbl

[6] P. Benevieri, M. Furi, Abstract and Applied Analysis, 2006, 64764, 1–20 | DOI

[7] F.E. Browder, Bull. Amer. Math. Soc., 69:4 (1963), 862–874 | DOI | MR | Zbl

[8] G. Dinca, P. Jebelean, J. Mawhin, Portugaliae Mathematica, 58:3 (2001), 339–378 | MR | Zbl

[9] P. Fitzpatrick, J. Pejsachowicz, Mem. Amer. Math. Soc., 101, no. 483, 1993, 1–131 | MR

[10] P. Fitzpatrick, J. Pejsachowicz, P.J. Rabier, J. Funct. Anal., 124 (1994), 1–39 | DOI | MR | Zbl

[11] P. Fitzpatrick, J. Pejsachowicz, P.J. Rabier, J. d'Analyse Mathématique, 76 (1998), 289–319 | MR

[12] A.I. Koshelev, Regularity of Solutions of Elliptic Equations and Systems, Nauka, M., 1986 | MR

[13] M.A. Krasnosel'skii, P.P. Zabreiko, Geometrical Methods in Nonlinear Analysis, Grundlehren Math. Wiss., 263, Springer-Verlag, Berlin et al., 1984 | DOI | MR

[14] J. Leray, J. Schauder, Ann. Sci. Ecóle Norm. Sup., 51 (1934), 45–78 | DOI | MR

[15] G.H. Meisters, Rocky Mountain J. Math., 12:4 (1982), 679–705 | DOI | MR | Zbl

[16] C.B. Morrey, Amer. J. Math., 78:1 (1956), 137–170 | DOI | MR | Zbl

[17] C.B. Morrey, Multiple Integrals in the Calculus of Variations, Springer-Verlag, Berlin et al., 1966 | MR | Zbl

[18] J.I. Nieto, Math. Annalen, 178 (1968), 62–77 | DOI | MR | Zbl

[19] L. Nirenberg, Bull. Amer. Math. Soc. (N. S.), 14 (1981), 267–302 | DOI

[20] R. Palais, Foundations of Global Nonlinear Analysis, Benjamin, New York, 1968 | MR

[21] M. Renardy, R.C. Rogers, An Introduction to Partial Differential Equations, Texts in Applied Mathematics, Springer, 2004 | MR | Zbl

[22] M. Schechter, Ann. Math., 72:1960, 581–593 | MR | Zbl

[23] I. Shestakov, “On the Zaremba problem for the $p~$-Laplace operator”, Complex Analysis and Dynamical Systems V, Contemporary Mathematics, 591, Amer. Math. Soc., Providence, RI, 2013 | MR | Zbl

[24] A.I. Shnirelman, Math. USSR Sb., 18 (1972), 373–396 | DOI

[25] E.J. Straube, Ann. Scuola Norm. Super. Pisa, 11:4 (1984), 559–591 | MR | Zbl

[26] N. Tarkhanov, The Cauchy Problem for Solutions of Elliptic Equations, Akademie Verlag, Berlin, 1995 | MR | Zbl

[27] M.G. Zaidenberg, S.G. Krein, P.A. Kuchment, A.A. Pankov, Russian Math. Surveys, 30:5 (1975), 115–175 | DOI | Zbl