On analytical complexity of antiderivatives
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 12 (2019) no. 6, pp. 694-698

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that the class of all functions of two variables of finite analytical complexity is not closed under integration. It also follows that the class of all functions of finite analytical complexity in the case of three or more variables is not closed under integration. For the case of three or more variables explicit examples of finite complexity functions with infinite complexity antiderivatives are constructed.
Keywords: analytical complexity, integration, finite complexity functions.
@article{JSFU_2019_12_6_a4,
     author = {Maria A. Stepanova},
     title = {On analytical complexity of antiderivatives},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {694--698},
     publisher = {mathdoc},
     volume = {12},
     number = {6},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2019_12_6_a4/}
}
TY  - JOUR
AU  - Maria A. Stepanova
TI  - On analytical complexity of antiderivatives
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2019
SP  - 694
EP  - 698
VL  - 12
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2019_12_6_a4/
LA  - en
ID  - JSFU_2019_12_6_a4
ER  - 
%0 Journal Article
%A Maria A. Stepanova
%T On analytical complexity of antiderivatives
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2019
%P 694-698
%V 12
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2019_12_6_a4/
%G en
%F JSFU_2019_12_6_a4
Maria A. Stepanova. On analytical complexity of antiderivatives. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 12 (2019) no. 6, pp. 694-698. http://geodesic.mathdoc.fr/item/JSFU_2019_12_6_a4/