On analytical complexity of antiderivatives
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 12 (2019) no. 6, pp. 694-698
Voir la notice de l'article provenant de la source Math-Net.Ru
It is shown that the class of all functions of two variables of finite analytical complexity is not closed under integration. It also follows that the class of all functions of finite analytical complexity in the case of three or more variables is not closed under integration. For the case of three or more variables explicit examples of finite complexity functions with infinite complexity antiderivatives are constructed.
Keywords:
analytical complexity, integration, finite complexity functions.
@article{JSFU_2019_12_6_a4,
author = {Maria A. Stepanova},
title = {On analytical complexity of antiderivatives},
journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
pages = {694--698},
publisher = {mathdoc},
volume = {12},
number = {6},
year = {2019},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JSFU_2019_12_6_a4/}
}
TY - JOUR AU - Maria A. Stepanova TI - On analytical complexity of antiderivatives JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2019 SP - 694 EP - 698 VL - 12 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2019_12_6_a4/ LA - en ID - JSFU_2019_12_6_a4 ER -
Maria A. Stepanova. On analytical complexity of antiderivatives. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 12 (2019) no. 6, pp. 694-698. http://geodesic.mathdoc.fr/item/JSFU_2019_12_6_a4/