Electromechanical properties and anisotropy of acoustic waves characteristics in single crystals YAl$_3$(BO$_3$)$_4$
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 12 (2019) no. 6, pp. 756-771.

Voir la notice de l'article provenant de la source Math-Net.Ru

Velocity of bulk acoustic waves in base and rotated cuts have been measured by the ultrasonic pulse-echo method and values of C$_{ijkl}^E$ and e$_{ijk}$ in single crystals YAl$_3$(BO$_3$)$_4$ have been calculated. The value of d$_{ijk}$ piezoelectric modulus of these single crystals have been determined by quasistatic measurements, and $\varepsilon_{ij}^\sigma$ dielectric constants have been determined by the flat capacitor method. Experimental values of material constants have been applied for the study of anisotropy of acoustic waves characteristics in single crystals YAl$_3$(BO$_3$)$_4$.
Keywords: electromechanical properties, acoustic waves, multiferroics.
@article{JSFU_2019_12_6_a11,
     author = {Pavel P. Turchin and Sergey I. Burkov and Vladimir I. Turchin and Sergey V. Yurkevich and Pavel O. Sukhodaev and Irina S. Raikova},
     title = {Electromechanical properties and anisotropy of acoustic waves characteristics in single crystals {YAl}$_3${(BO}$_3$)$_4$},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {756--771},
     publisher = {mathdoc},
     volume = {12},
     number = {6},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2019_12_6_a11/}
}
TY  - JOUR
AU  - Pavel P. Turchin
AU  - Sergey I. Burkov
AU  - Vladimir I. Turchin
AU  - Sergey V. Yurkevich
AU  - Pavel O. Sukhodaev
AU  - Irina S. Raikova
TI  - Electromechanical properties and anisotropy of acoustic waves characteristics in single crystals YAl$_3$(BO$_3$)$_4$
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2019
SP  - 756
EP  - 771
VL  - 12
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2019_12_6_a11/
LA  - en
ID  - JSFU_2019_12_6_a11
ER  - 
%0 Journal Article
%A Pavel P. Turchin
%A Sergey I. Burkov
%A Vladimir I. Turchin
%A Sergey V. Yurkevich
%A Pavel O. Sukhodaev
%A Irina S. Raikova
%T Electromechanical properties and anisotropy of acoustic waves characteristics in single crystals YAl$_3$(BO$_3$)$_4$
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2019
%P 756-771
%V 12
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2019_12_6_a11/
%G en
%F JSFU_2019_12_6_a11
Pavel P. Turchin; Sergey I. Burkov; Vladimir I. Turchin; Sergey V. Yurkevich; Pavel O. Sukhodaev; Irina S. Raikova. Electromechanical properties and anisotropy of acoustic waves characteristics in single crystals YAl$_3$(BO$_3$)$_4$. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 12 (2019) no. 6, pp. 756-771. http://geodesic.mathdoc.fr/item/JSFU_2019_12_6_a11/

[1] D. Khomskii, “Trend: Classifying multiferroics: Mechanisms and effects”, Physics, 2 (2009), 20 | DOI

[2] R. Ramesh, N.A. Spaldin, “Multiferroics: progress and prospects in thin films”, Nanoscience And Technology, A Collection of Reviews from Nature Journals, 2010, 20–28

[3] N.A. Spaldin, M. Fiebig, “The renaissance of magnetoelectric multiferroics”, Science, 309:5733 (2005), 391–392 | DOI

[4] N.V. Volkov, et al., “Magnetization, magnetoelectric polarization and heat capacity HoGa$_3$(BO$_3)_4$”, JETP Letters, 99:2 (2014), 72–80

[5] A.I. Popov, D.I. Plokhov, A.K. Zvezdin, “Quantum theory of magnetoelectricity in rare-earth multiferroics: Nd, Sm, and Eu ferroborates”, Physical Review B, 87:2 (2013), 024413 | DOI

[6] A.K. Zvezdin, “About the magnetoelectric effects in the gadolinium iron borate GdFe$_3$(BO$3)_4$”, JETP Letters, 81:6 (2005), 335–340 | DOI

[7] K.C. Liang et al., “Giant magnetoelectric effect in HoAl$_3$(BO$_3)_4$”, Physical Review B, 83:18 (2011), 180417 | DOI

[8] A.A. Mukhin, et al., “The giant magnetodielectric effect in the multiferroic SmFe$_3$(BO$3)_4$”, JETP Letters, 93:5 (2011), 305–311 | DOI

[9] K.N. Gorbachenya et al., “High-frequency Er$^{3+}$, Yb$^{3+}$: YAl$_3$(BO$_3)_4$ microchip laser with longitudinal diode pumping”, Devices and Methods of Measurement, 5:2 (2012)

[10] A.S. Aleksandrovsky et al., “Upconversion luminescence of YA$_3$(BO$_3)_4$:(Yb$^{3+}$, Tm$^{3+}$) crystals”, Journal of Alloys and Compounds, 496:1–2 (2010), L18–L21 | DOI

[11] G. Wang et al., Cr$^3$-doped borates-potential tunable laser crystals?, Radiation effects and defects in solids, 136:1–4 (1995), 43–46 | DOI

[12] L. Zheng et al., “> 1 MW peak power at 266 nm in nonlinear YAl$_3$(BO$_3$)$_4$ (YAB) single crystal”, 2015 Conference on Lasers and Electro-Optics (CLEO), IEEE, 2015, 1–2

[13] T.N. Gaydamak et al., “Elastic and piezoelectric moduli of Nd and Sm ferroborates”, Low Temperature Physics, 41:8 (2015), 614–618 | DOI

[14] V.I. Zinenko et al., “Oscillation spectra, elastic, piezoelectric and magnetoelectric properties of crystals HoFe$_3$(BO$_3)_4$ and HoAl$_3$(BO$_3)_4$”, Journal of Experimental and Theoretical Physics, 144:6 (2013), 1174–1183

[15] G.A. Zvyagina et al., “Magnetoelastic effects in terbium ferroborate”, Low-temperature physics, 34:1 (2008), 1142–1151 (in Russian)

[16] W. Mason, Physical Acoustics, v. 1, Ultrasound Research Methods and Devices, Mir, M., 1966 (in Russian) | MR

[17] P.P. Turchin et al., “Pulsed automated measurements of elastic waves velocities in crystals”, Polzunovsky Vestnik, 2011, no. 3-1, 143–147 (in Russian)

[18] K.S. Aleksandrov, B.P. Sorokin, P.P. Turchin, D.A. Glushkov, “Non-linear piezoelectricity in La$_3$Ga$_5$SiO$_{14}$ piezoelectric single crystal”, Ferroelectrics Letters, 14:5–6 (1992), 115–126 | DOI

[19] B.P. Sorokin, P.P. Turchin, S.I. Burkov, D.A. Glushkov, K.S. Aleksandrov, “Influence of static electric field, mechanical pressure and temperature on the propagation of acoustic waves in La$_3$Ga$_5$SiO$_{14}$ piezoelectric single crystals”, Proc. of 1996 IEEE Int. Frequency Control Symp. (USA, Hawaii, Honolulu, 1996), 161–169

[20] V.A. Golovin, I.A. Kaplunov, O.V. Malyshkina, B.B. Ped'ko, A.A. Movchikova, Physical principles, research methods and practical application of piezomaterials, Tekhnosfera, M., 2013

[21] M.V. Bogush, Design of piezoelectric sensors based on spatial electrothermoelastic models, Tekhnosfera, M., 2014

[22] J. Nye, Physical properties of crystals, Foreign literature, M., 1967

[23] Yu.I. Sirotin, M.P. Shaskol'skaya, Principles of Crystal Physics, 1979

[24] E. Dieulesaint, D. Royer, Elastic waves in solids: applications to signal processing, John Wiley $\$ Sons, 1980 | MR

[25] E.L. Belokoneva et al., “Crystal structure of YAl$_3$(BO$3)_4$”, Journal of Structural Chemistry, 22:3 (1981), 476–478 | DOI

[26] K.S. Alexandrov, B.P. Sorokin, S.I. Burkov, Effective piezoelectric crystals for acoustoelectronics, piezotechnics and sensors, v. 1, Publishing House of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 2007

[27] S.I. Burkov, B.P. Sorokin, Calculation of the anisotropy of bulk acoustic waves propagation in piezocrystals under the effect of a uniform external electric field, Certificate No 2009613152 dated 06.06.2009

[28] G.W. Farnell, Acoustic Surface Waves, Topics in Applied Physics, 24, ed. A. A. Oliner, 1978

[29] S.I. Burkov, B.P. Sorokin, Calculation of the anisotropy of surface acoustic waves propagation in piezocrystals under the effect of a uniform external electric field, Certificate No 2009613150 dated 18.06.2009