Local automorphisms of nil-triangular subalgebras of classical lie type Chevalley algebras
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 12 (2019) no. 5, pp. 598-605.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the problem of describing local automorphisms of nil-triangular subalgebra of the Chevalley algebra over an associative commutative ring with identity.
Keywords: local automorphism, standard central series, characteristic ideal, Chevalley algebra
Mots-clés : automorphism, nil-triangular subalgebra.
@article{JSFU_2019_12_5_a7,
     author = {Igor N. Zotov},
     title = {Local automorphisms of nil-triangular subalgebras of classical lie type {Chevalley} algebras},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {598--605},
     publisher = {mathdoc},
     volume = {12},
     number = {5},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2019_12_5_a7/}
}
TY  - JOUR
AU  - Igor N. Zotov
TI  - Local automorphisms of nil-triangular subalgebras of classical lie type Chevalley algebras
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2019
SP  - 598
EP  - 605
VL  - 12
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2019_12_5_a7/
LA  - en
ID  - JSFU_2019_12_5_a7
ER  - 
%0 Journal Article
%A Igor N. Zotov
%T Local automorphisms of nil-triangular subalgebras of classical lie type Chevalley algebras
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2019
%P 598-605
%V 12
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2019_12_5_a7/
%G en
%F JSFU_2019_12_5_a7
Igor N. Zotov. Local automorphisms of nil-triangular subalgebras of classical lie type Chevalley algebras. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 12 (2019) no. 5, pp. 598-605. http://geodesic.mathdoc.fr/item/JSFU_2019_12_5_a7/

[1] D.R. Larson, A.R. Sourour, “Local derivations and local automorphisms of $B(H)$”, Proc. Sympos. Pure Math., 51 (1990), 187–194 | DOI | MR | Zbl

[2] T. Becker, J. Escobar Salsedo, C. Salas, R. Turdibaev, On local automorphisms of $\mathfrak{sl_n}$, 2018, arXiv: 1711.11297 | MR

[3] R. Crist, “Local automorphisms”, Proc. Amer. Math. Soc., 128 (2000), 1409–1414 | DOI | MR | Zbl

[4] A.P. Elisova, “Local automorphisms of nilpotent algebras of matrices of small orders”, Russian Mathematics (Iz. VUZ), 57:2 (2013), 40–48 (in Russian) | MR | Zbl

[5] A.P. Elisova, I.N. Zotov, V.M. Levchuk, G.S. Suleimanova, “Local automorphisms and local derivations of nilpotent matrix algebras”, The Bulletin of Irkutsk State University. Series Mathematics, 4:1 (2011), 9–19 (in Russian) | Zbl

[6] I.N. Zotov, “Local Automorphisms of Nilpotent Algebras of Matrices of Small Orders”, Conference thesis of XLII regional student scientific conference of mathematics and computer science, SibFU, Krasnoyarsk, 2009, 24–25 (in Russian)

[7] R.W. Carter, Simple groups of Lie type, Wiley and Sons, New York, 1972 | MR | Zbl

[8] N. Bourbaki, Groupes et algebraes de Lie, Chapt. IV–VI, Hermann, Paris, 1968 | MR

[9] V.M. Levchuk, “Automorphisms of unipotent subgroups of Chevalley groups”, Algebra And Logic, 29:3 (1990), 315–338 (in Russian) | DOI | MR | Zbl

[10] I.N. Zotov, V.M. Levchuk, “The Mal'tsev correspondence and isomorphisms of niltriangular subrings of Chevalley algebras”, Trudy Inst. Mat. i Mekh. UrO RAN, 24, no. 4, 2011, 135–145 (in Russian) | DOI | MR

[11] C. Chevalley, “On Some Simple Groups”, Matematika, Periodic Collection of Translations of Foreign Papers, 2:1 (1958), 3–53 (in Russian)

[12] V.M. Levchuk, “Connections between a unitriangular group and certain rings. Part 2. Groups of automorphisms”, Siberian Mat. J., 24 (1983), 543–557 (in Russian) | DOI | MR | Zbl

[13] V.M. Levchuk, A.V. Litavrin, “Hypercentral automorphisms of nil-triangular subalgebras in Chevalley algebras”, Sib. Elektron. Mat. Izv., 13 (2016), 467–477 (in Russian) | MR | Zbl

[14] A.V. Litavrin, Automorphisms of nil-triangular subrings of classical Chevalley algebras, Diss. cand. phys.-math. sciences, TSU, Tomsk, 2017 (in Russian)

[15] A.P. Elisova, Local automorphisms and local derivations of nilpotent algebras, Diss. cand. phys.-math. sciences, SibFU, Krasnoyarsk, 2013 (in Russian)

[16] V.M. Levchuk, “The Niltriangular Subalgebra of the Chevalley Algebra: the Enveloping Algebra, Ideals, and Automorphisms”, Doklady Mathematics, 97:1 (2018), 23–27 | DOI | MR | Zbl

[17] V.M. Levchuk, “Niltriangular subalgebra of Chevalley algebra and the enveloping algebras”, Group Theory, Middle East Technical University, Ankara, 2019, 13–14 | MR