Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2019_12_5_a7, author = {Igor N. Zotov}, title = {Local automorphisms of nil-triangular subalgebras of classical lie type {Chevalley} algebras}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {598--605}, publisher = {mathdoc}, volume = {12}, number = {5}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JSFU_2019_12_5_a7/} }
TY - JOUR AU - Igor N. Zotov TI - Local automorphisms of nil-triangular subalgebras of classical lie type Chevalley algebras JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2019 SP - 598 EP - 605 VL - 12 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2019_12_5_a7/ LA - en ID - JSFU_2019_12_5_a7 ER -
%0 Journal Article %A Igor N. Zotov %T Local automorphisms of nil-triangular subalgebras of classical lie type Chevalley algebras %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2019 %P 598-605 %V 12 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2019_12_5_a7/ %G en %F JSFU_2019_12_5_a7
Igor N. Zotov. Local automorphisms of nil-triangular subalgebras of classical lie type Chevalley algebras. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 12 (2019) no. 5, pp. 598-605. http://geodesic.mathdoc.fr/item/JSFU_2019_12_5_a7/
[1] D.R. Larson, A.R. Sourour, “Local derivations and local automorphisms of $B(H)$”, Proc. Sympos. Pure Math., 51 (1990), 187–194 | DOI | MR | Zbl
[2] T. Becker, J. Escobar Salsedo, C. Salas, R. Turdibaev, On local automorphisms of $\mathfrak{sl_n}$, 2018, arXiv: 1711.11297 | MR
[3] R. Crist, “Local automorphisms”, Proc. Amer. Math. Soc., 128 (2000), 1409–1414 | DOI | MR | Zbl
[4] A.P. Elisova, “Local automorphisms of nilpotent algebras of matrices of small orders”, Russian Mathematics (Iz. VUZ), 57:2 (2013), 40–48 (in Russian) | MR | Zbl
[5] A.P. Elisova, I.N. Zotov, V.M. Levchuk, G.S. Suleimanova, “Local automorphisms and local derivations of nilpotent matrix algebras”, The Bulletin of Irkutsk State University. Series Mathematics, 4:1 (2011), 9–19 (in Russian) | Zbl
[6] I.N. Zotov, “Local Automorphisms of Nilpotent Algebras of Matrices of Small Orders”, Conference thesis of XLII regional student scientific conference of mathematics and computer science, SibFU, Krasnoyarsk, 2009, 24–25 (in Russian)
[7] R.W. Carter, Simple groups of Lie type, Wiley and Sons, New York, 1972 | MR | Zbl
[8] N. Bourbaki, Groupes et algebraes de Lie, Chapt. IV–VI, Hermann, Paris, 1968 | MR
[9] V.M. Levchuk, “Automorphisms of unipotent subgroups of Chevalley groups”, Algebra And Logic, 29:3 (1990), 315–338 (in Russian) | DOI | MR | Zbl
[10] I.N. Zotov, V.M. Levchuk, “The Mal'tsev correspondence and isomorphisms of niltriangular subrings of Chevalley algebras”, Trudy Inst. Mat. i Mekh. UrO RAN, 24, no. 4, 2011, 135–145 (in Russian) | DOI | MR
[11] C. Chevalley, “On Some Simple Groups”, Matematika, Periodic Collection of Translations of Foreign Papers, 2:1 (1958), 3–53 (in Russian)
[12] V.M. Levchuk, “Connections between a unitriangular group and certain rings. Part 2. Groups of automorphisms”, Siberian Mat. J., 24 (1983), 543–557 (in Russian) | DOI | MR | Zbl
[13] V.M. Levchuk, A.V. Litavrin, “Hypercentral automorphisms of nil-triangular subalgebras in Chevalley algebras”, Sib. Elektron. Mat. Izv., 13 (2016), 467–477 (in Russian) | MR | Zbl
[14] A.V. Litavrin, Automorphisms of nil-triangular subrings of classical Chevalley algebras, Diss. cand. phys.-math. sciences, TSU, Tomsk, 2017 (in Russian)
[15] A.P. Elisova, Local automorphisms and local derivations of nilpotent algebras, Diss. cand. phys.-math. sciences, SibFU, Krasnoyarsk, 2013 (in Russian)
[16] V.M. Levchuk, “The Niltriangular Subalgebra of the Chevalley Algebra: the Enveloping Algebra, Ideals, and Automorphisms”, Doklady Mathematics, 97:1 (2018), 23–27 | DOI | MR | Zbl
[17] V.M. Levchuk, “Niltriangular subalgebra of Chevalley algebra and the enveloping algebras”, Group Theory, Middle East Technical University, Ankara, 2019, 13–14 | MR