Voir la notice de l'article provenant de la source Math-Net.Ru
@article{JSFU_2019_12_5_a2, author = {Sreelatha Chandragiri}, title = {Difference equations and generating functions for some lattice path problems}, journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika}, pages = {551--559}, publisher = {mathdoc}, volume = {12}, number = {5}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/JSFU_2019_12_5_a2/} }
TY - JOUR AU - Sreelatha Chandragiri TI - Difference equations and generating functions for some lattice path problems JO - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika PY - 2019 SP - 551 EP - 559 VL - 12 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JSFU_2019_12_5_a2/ LA - en ID - JSFU_2019_12_5_a2 ER -
%0 Journal Article %A Sreelatha Chandragiri %T Difference equations and generating functions for some lattice path problems %J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika %D 2019 %P 551-559 %V 12 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/JSFU_2019_12_5_a2/ %G en %F JSFU_2019_12_5_a2
Sreelatha Chandragiri. Difference equations and generating functions for some lattice path problems. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 12 (2019) no. 5, pp. 551-559. http://geodesic.mathdoc.fr/item/JSFU_2019_12_5_a2/
[1] A.P. Lyapin, S. Chandragiri, “Generating functions for vector partitions and a basic recurrence relation”, Journal of Difference Equations and Applications, 25 (2019), 1052–1061 | DOI | MR | Zbl
[2] M. Bousquet-Mélou, M. Petkovšek, “Linear recurrences with constant coefficients: the multivariate case”, Discrete Mathematics, 225 (2000), 51–75 | DOI | MR | Zbl
[3] E.K. Leinartas, A.P. Lyapin, “On the rationality of multidimensional recursive series”, J. Sib. Fed. Univ. Math. Phys., 4:2 (2009), 449–455
[4] E.K. Leinartas, “Multiple Laurent series and fundamental solutions of linear difference equations”, Siberian Mathematical Journal, 48:2 (2007), 268–272 | DOI | MR | Zbl
[5] J. Labelle, Y.N. Yeh, “Generalized Dyck paths”, Discrete Math., 82 (1990), 1–6 | DOI | MR | Zbl
[6] D. Merlini, R. Sprugnoli, M.C. Verri, “The area determined by underdiagonal lattice paths”, Trees in Algebra and Programming — CAAP, 1996, 59–71 | DOI | MR
[7] I.M. Gessel, “A factorization for formal Laurent series and lattice path enumeration”, J. Combin. Theory. Ser. A, 28 (1980), 321–337 | DOI | MR
[8] A. Dvoretzky, Th. Motzkin, “A problem of arrangements”, Duke Math. J., 14 (1947), 305–313 | DOI | MR | Zbl
[9] P. Duchon, “On the enumeration and generation of generalized Dyck words”, Discrete Math., 225 (2000), 121–135 | DOI | MR | Zbl
[10] R. Stanley, Enumerative Combinatorics, v. 1, 1990 | MR
[11] A.A. Kytmanov, A.P. Lyapin, T.M. Sadykov, “Evaluating the rational generating function for the solution of the Cauchy problem for a two-dimensional difference equation with constant coefficients”, Programming and computer software, 43:2 (2017), 105–111 | DOI | MR
[12] D. Merlini, D.G. Rogers, R. Sprugnoli, M.C. Verri, “Underdiagonal lattice paths with unrestricted steps”, Discrete Applied Mathematics, 91 (1999), 197–213 | DOI | MR | Zbl