Classification of hyperfunctions of rank 2 with respect to membership in the maximal partial ultraclones
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 12 (2019) no. 5, pp. 645-652.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we consider the set of hyperfunctions, which is a subset of the full partial ultraclone of rank 2. For hyperfunctions, the problem of their classification with respect to membership in the the maximal partial ultraclones is solved. The relation of membership in the maximal partial ultraclones is an equivalence relation and generates the corresponding partition into equivalence classes. A complete description of all equivalence classes, the total number of which is 28, is obtained.
Keywords: multifunction, hyperfunction, clone, ultraclone, maximal partial ultraclone, classification of functions.
@article{JSFU_2019_12_5_a13,
     author = {Sergey A. Badmaev},
     title = {Classification of hyperfunctions of rank 2 with respect to membership in the maximal partial ultraclones},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {645--652},
     publisher = {mathdoc},
     volume = {12},
     number = {5},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2019_12_5_a13/}
}
TY  - JOUR
AU  - Sergey A. Badmaev
TI  - Classification of hyperfunctions of rank 2 with respect to membership in the maximal partial ultraclones
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2019
SP  - 645
EP  - 652
VL  - 12
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2019_12_5_a13/
LA  - en
ID  - JSFU_2019_12_5_a13
ER  - 
%0 Journal Article
%A Sergey A. Badmaev
%T Classification of hyperfunctions of rank 2 with respect to membership in the maximal partial ultraclones
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2019
%P 645-652
%V 12
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2019_12_5_a13/
%G en
%F JSFU_2019_12_5_a13
Sergey A. Badmaev. Classification of hyperfunctions of rank 2 with respect to membership in the maximal partial ultraclones. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 12 (2019) no. 5, pp. 645-652. http://geodesic.mathdoc.fr/item/JSFU_2019_12_5_a13/

[1] S.A. Badmaev, “On the Classes of Boolean Functions Generated by Maximal Partial Ultraclones”, The Bulletin of Irkutsk State University. Series Mathematics, 27 (2019), 3–14 (in Russian) | DOI | MR | Zbl

[2] S.V. Zamaratskaya, V.I. Panteleev, “Classification and Types of Bases of All Ultrafunctions on Two-Element Set”, The Bulletin of Irkutsk State University. Series Mathematics, 16 (2016), 58–70 (in Russian) | Zbl

[3] A.S. Zinchenko, V.I. Panteleev, “On Classes of Hyperfunctions of Rank 2 Generated by Maximal Multiclones”, The Bulletin of Irkutsk State University. Series Mathematics, 21 (2017), 61–76 (in Russian) | DOI | MR | Zbl

[4] A.S. Kazimirov, V.I. Panteleyev, L.V. Tokareva, “Classification and Enumeration of Bases in Clone of All Hyperfunctions on Two-Elements Set”, The Bulletin of Irkutsk State University. Series Mathematics, 7 (2014), 61–78 (in Russian) | Zbl

[5] A.S. Kazimirov, V.I. Panteleyev, “On the Classes of Boolean Functions Generated by Maximal Multiclones”, The Bulletin of Buryat State University. Mathematics and Informatics, 9 (2015), 16–22 (in Russian)

[6] S.V. Yablonskij, “On the Superpositions of Logic Functions”, Mat. Sbornik, 30:2(72) (1952), 329–348 (in Russian) | MR | Zbl

[7] M. Miyakawa, I. Stojmenović, D. Lau, I. Rosenberg, “Classification and Basis Enumerations in Many-Valued Logics”, Proc. 17th International Symposium on Multi-Valued logic (Boston, 1987), 151–160 | MR

[8] M. Miyakawa, I. Stojmenović, D. Lau, I. Rosenberg, “Classification and Basis Enumerations of the Algebras for Partial Functions”, Proc. 19th International Symposium on Multi-Valued logic (Rostock, 1989), 8–13 | MR

[9] S.A. Badmaev, “On Some Maximal Clone of Partial Ultrafunctions on a Two-Element Set”, Journal of Siberian Federal University. Mathematics and Physics, 10:2 (2017), 140–145 | DOI | MR

[10] S.A. Badmaev, “A Completeness Criterion of Set of Multifunctions in Full Partial Ultraclone of Rank 2”, Siberian Electronic Mathematical Reports, 15 (2018), 450–474 (in Russian) | MR