Instability of a two-layer system with deformable interfaces under laser beam heating
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 12 (2019) no. 5, pp. 543-550.

Voir la notice de l'article provenant de la source Math-Net.Ru

New non-standard problem of thermocapillary convection is studied to analyze the flows arising in a two-layer system under action of an intense thermal exposure on the free boundary by a laser beam. Characteristics of the physical experiments are presented. Parameters of the experiments are the ratio of the liquid layer thicknesses, the types of working liquids, the absorption coefficients of media. Special attention is given to the study of the influence of the system geometry when changing the thickness for one of the liquid layers. Theoretical study of the thermocapillary convection includes development of the mathematical model tested on the basis of new physical experiment data and of the effective numerical algorithm to calculate basic characteristics. The occurrence of the decaying oscillations, which first experimentally discovered by the authors, and the evolution of the interfaces and layers are investigated. The results of numerical study of structure and nature of convective flows in the horizontal two-layer liquid – liquid systems of the type "silicone oil – glycerin", and comparison of the experimental and theoretical data allow one to validate the developed mathematical model, to analyze the peculiarities of heat and mass transfer in the two-layer system induced by the action of a local heat source at the free boundary.
Keywords: two-layer system, free surface, local thermal load.
Mots-clés : thermocapillary convection, interface
@article{JSFU_2019_12_5_a1,
     author = {Victoria B. Bekezhanova and Olga N. Goncharova and Natalia A. Ivanova and Denis S. Klyuev},
     title = {Instability of a two-layer system with deformable interfaces under laser beam heating},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {543--550},
     publisher = {mathdoc},
     volume = {12},
     number = {5},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2019_12_5_a1/}
}
TY  - JOUR
AU  - Victoria B. Bekezhanova
AU  - Olga N. Goncharova
AU  - Natalia A. Ivanova
AU  - Denis S. Klyuev
TI  - Instability of a two-layer system with deformable interfaces under laser beam heating
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2019
SP  - 543
EP  - 550
VL  - 12
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2019_12_5_a1/
LA  - en
ID  - JSFU_2019_12_5_a1
ER  - 
%0 Journal Article
%A Victoria B. Bekezhanova
%A Olga N. Goncharova
%A Natalia A. Ivanova
%A Denis S. Klyuev
%T Instability of a two-layer system with deformable interfaces under laser beam heating
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2019
%P 543-550
%V 12
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2019_12_5_a1/
%G en
%F JSFU_2019_12_5_a1
Victoria B. Bekezhanova; Olga N. Goncharova; Natalia A. Ivanova; Denis S. Klyuev. Instability of a two-layer system with deformable interfaces under laser beam heating. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 12 (2019) no. 5, pp. 543-550. http://geodesic.mathdoc.fr/item/JSFU_2019_12_5_a1/

[1] D.S. Klyuev, V.M. Fliagin, M. Al-Muzaiqer, N.A. Ivanova, “Laser-actuated optofluidic diaphragm capable of optical signal tracking”, Applied Physics Letters, 114 (2019), 011602 | DOI

[2] D.D. Joseph, Stability of fluid motion, Springer-Verlag, 1976 | MR

[3] A.S. Ovcharova, “Multilayer system of films heated from above”, Int. J. Heat Mass Transfer, 114 (2017), 992–1000 | DOI

[4] A.S. Ovcharova, V.B. Bekezhanova, “Convection regimes induced by local boundary heating in a liquid-gas system”, J. Fluid Mech., 873 (2019), 441–458 | DOI | MR | Zbl

[5] A.S. Ovcharova, “Rupture of liquid film, placed over deep fluid, under action of thermal load”, Int. J. Heat Mass Transfer, 78 (2014), 294–301 | DOI

[6] V.K. Andreev, Yu.A. Gaponenko, O.N. Goncharova, V.V. Pukhnachov, Mathematical models of convection, De Gruyter, Berlin–Boston, 2012 | MR | Zbl

[7] G.N. Antonow, “Sur la tension superficielle à la limite de deux couches”, J. Chim. Phys., 5 (1907), 372–385 | DOI