Domains of convergence for $A$-hypergeometric series and integrals
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 12 (2019) no. 4, pp. 509-529.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove two theorems on the domains of convergence for $A$-hypergeometric series and for associated Mellin–Barnes type integrals. The exact convergence domains are described in terms of amoebas and coamoebas of the corresponding principal $A$-determinants.
Keywords: $A$-hypergeometric series, Mellin–Barnes integral, $\Gamma$-integral
Mots-clés : principal $A$-determinant.
@article{JSFU_2019_12_4_a13,
     author = {Lisa Nilsson and Mikael Passare and August K. Tsikh},
     title = {Domains of convergence for $A$-hypergeometric series and integrals},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {509--529},
     publisher = {mathdoc},
     volume = {12},
     number = {4},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2019_12_4_a13/}
}
TY  - JOUR
AU  - Lisa Nilsson
AU  - Mikael Passare
AU  - August K. Tsikh
TI  - Domains of convergence for $A$-hypergeometric series and integrals
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2019
SP  - 509
EP  - 529
VL  - 12
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2019_12_4_a13/
LA  - en
ID  - JSFU_2019_12_4_a13
ER  - 
%0 Journal Article
%A Lisa Nilsson
%A Mikael Passare
%A August K. Tsikh
%T Domains of convergence for $A$-hypergeometric series and integrals
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2019
%P 509-529
%V 12
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2019_12_4_a13/
%G en
%F JSFU_2019_12_4_a13
Lisa Nilsson; Mikael Passare; August K. Tsikh. Domains of convergence for $A$-hypergeometric series and integrals. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 12 (2019) no. 4, pp. 509-529. http://geodesic.mathdoc.fr/item/JSFU_2019_12_4_a13/

[1] I. Gelfand, M. Kapranov, A. Zelevinsky, “Hypergeometric functions and toric varieties”, Funct. Anal. Appl., 23:2 (1989), 94–106 | DOI | MR | Zbl

[2] J. Horn, “Über die Convergenz der hypergeometrischen Reihen zweier und dreier Veränderlichen”, Math. Ann., 34 (1889), 544–600 | DOI | MR

[3] B. Grunbaum, Convex polytopes, Graduate Texts in Mathematics, 221, 2nd ed., Springer Verlag, 2003 | DOI | MR

[4] A. Tsikh, O. Zhdanov, “Investigation of multiple Mellin-Barnes integrals by means of multidimensional residues”, Siberian Math. J., 39:2 (1998), 245–260 | DOI | MR | Zbl

[5] L. Nilsson, Amoebas, Discriminants, and Hypergeometric Functions, Doctoral thesis in mathematics, Stocholm University, Sweden, 2009

[6] H. Mellin, “Mellin Résolution de l'équation algébrique générale à l'aide de la fonction gamma”, C. R. Acad. Sci. Paris Sér. I Math., 172 (1921), 658–661 | Zbl

[7] M. Passare, A. Tsikh, “Algebraic equations and hypergeometric series”, The legacy of Niels Henrik Abel, Springer, 2004, 653–672 | DOI | MR | Zbl

[8] I. Antipova, “Inversions of multdimensional Mellin transforms and solutions of algebraic equations”, Sb. Math., 198:4 (2007), 447–463 | DOI | MR | Zbl

[9] I. Antipova, E. Mikhalkin, “Analytic continuation of a general algebraic function by means of Puesieux series”, Proc. of the Steklov Institute of Math., 279 (2012), 3–13 | DOI | MR | Zbl

[10] I. Gelfand, M. Kapranov, A. Zelevinsky, “Equations of hypergeometric type and Newton polytopes”, Sov. Math. Dokl., 37:2 (1988), 678–683 | MR

[11] I. Gelfand, M. Kapranov, A. Zelevinsky, Discriminants, resultants and multidimensional determinants, Birkhäuser, Boston, 1994 | MR | Zbl

[12] M. Forsberg, M. Passare, A. Tsikh, “Laurent determinants and arrangements of hyperplane amoebas”, Adv. in Math., 151 (2000), 45–70 | DOI | MR | Zbl

[13] G. Mikhalkin, “Real algebraic curves, the moment map and amoebas”, Ann. of Math. (2), 151:1 (2000), 309–326 | DOI | MR | Zbl

[14] M. Passare, A. Tsikh, “Amoebas: their spines and their contours”, Idempotent mathematics and mathematical physics, Contemp. Math., 377, Amer. Math. Soc., Providence, RI, 2005, 275–288 | DOI | MR | Zbl

[15] R. Brualdi, H. Schneider, “Determinantal Identities, Gauss, Schur, Cauchy, Silvester, Kronecker, Jacobi, Binet, Laplace and Cayley”, Linear Algebra and its Appl., 52/53 (1983), 769–791 | DOI | MR | Zbl

[16] C. Curtis, I. Reiner, Representation theory of finite groups and associative algebras, Wiley, 1988 | MR | Zbl

[17] M. Passare, T. Sadykov, A. Tsikh, “Singularities of hypergeometric functions in several variables”, Compos. Math., 141:3 (2005), 787–810 | DOI | MR | Zbl

[18] I. Antipova, T. Zykova, “Mellin transforms and algebraic functions”, Integral transforms and secial functions, 26:10 (2015), 753–767 | DOI | MR | Zbl

[19] R. Buschman, H. Srivastava, “Convergence regions for some multiple Mellin-Barnes contour integrals representing generalized hypergeometric functions”, Internat. J. Math. Ed. Sci. Tech., 17:5 (1986), 605–609 | DOI | MR | Zbl

[20] F. Beukers, “Monodromy of $A$-hypergeometric functions”, J. für die reine und angewandte Mathematik, 718 (2016), 183–206 | MR | Zbl

[21] G. Shephard, “Combinatorial properties of associated zonotopes”, Can. J. Math., XXVI:2 (1974), 302–321 | DOI | MR | Zbl

[22] L. Nilsson, M. Passare, “Discriminant coamoebas in dimension two”, J. Commut. Algebra, 2:4 (2010), 447–471 | DOI | MR | Zbl