A priori estimates of the conjugate problem describing an axisymmetric thermocapillary motion for small Marangoni number
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 12 (2019) no. 4, pp. 483-495.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is devoted to the study of equations solution describing the axisymmetric motion of a viscous heat-conducting liquid. The motion is interpreted as a two-layer flow of viscous heat-conducting liquids in a cylinder with a solid wall and a common movable non-deformable interface. From a mathematical point of view, the arising initial-boundary value problem is nonlinear and inverse. Under certain assumptions concerning to apply the problem is replaced by a linear one. As a result, the unimprovable uniform priori estimates for solutions of the problems posed are obtained.
Keywords: a priori estimates, the conjugate inverse problem, Marangoni number.
Mots-clés : interface
@article{JSFU_2019_12_4_a10,
     author = {Victor K. Andreev and Evgeniy P. Magdenko},
     title = {A priori estimates of the conjugate problem describing an axisymmetric thermocapillary motion for small {Marangoni} number},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {483--495},
     publisher = {mathdoc},
     volume = {12},
     number = {4},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2019_12_4_a10/}
}
TY  - JOUR
AU  - Victor K. Andreev
AU  - Evgeniy P. Magdenko
TI  - A priori estimates of the conjugate problem describing an axisymmetric thermocapillary motion for small Marangoni number
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2019
SP  - 483
EP  - 495
VL  - 12
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2019_12_4_a10/
LA  - en
ID  - JSFU_2019_12_4_a10
ER  - 
%0 Journal Article
%A Victor K. Andreev
%A Evgeniy P. Magdenko
%T A priori estimates of the conjugate problem describing an axisymmetric thermocapillary motion for small Marangoni number
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2019
%P 483-495
%V 12
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2019_12_4_a10/
%G en
%F JSFU_2019_12_4_a10
Victor K. Andreev; Evgeniy P. Magdenko. A priori estimates of the conjugate problem describing an axisymmetric thermocapillary motion for small Marangoni number. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 12 (2019) no. 4, pp. 483-495. http://geodesic.mathdoc.fr/item/JSFU_2019_12_4_a10/

[1] V. K. Andreev, V. E. Zahvataev, E. A. Ryabitskii, Thermocapillary Instability, Nauka, Novosibirsk, 2000 (in Russian) | MR

[2] A. Nepomnyashii, I. Simanovskii, J.-C. Legros, Interfacial Convection in Multilayer System, Springer, New-York, 2006 | MR

[3] R. Narayanan, D. Schwabe, Interfacial Fluid Gynamics and Transport Processes, Springer-Verlag, Berlin–Heidelberg–New-York, 2009 | MR

[4] R. Kh. Zeytovnian, Convection in Fluids, Springer, Dordrecht–Heidelberg–London–New-York, 2009 | MR

[5] K. Hiemenz, “Die grenzschicht an einem in den gleichformigen Flussigkeitsstrom eingetauchten graden Kreiszylinder”, Dinglers Polytech. J., 326 (1911), 321–440

[6] J. F. Brady, A. Acrivos, “Steady flow in a channel or tube with an accelerating surface velocity”, J. Fluid Mech., 112 (1981), 127–150 | DOI | MR | Zbl

[7] V. K. Andreev, N. L. Sobachkina, The motion of a binary mixture in planar and cylindrical regions, Siberian Federal University, Krasnoyarsk, 2012

[8] V. K. Andreev, “On the Friedrichs inequality for compound domains”, J. Sib. Fed. Univ. Math. and Phys., 2 (2009), 146–157 (in Russian)

[9] G. Bateman, A. Erdein, Higher transcendental functions. Bessel functions, parabolic cylinder functions, orthogonal polynomials, Nauka, M., 1974 (in Russian) | MR

[10] S. G. Mikhlin, Linear partial differential equations, High school, M., 1977 (in Russian) | MR

[11] A. P. Prudnikov, Y. A. Bychkov, O. I. Marichev, Integrals and series. Special functions, Nauka, M., 1983 (in Russian) | MR | Zbl

[12] V. S. Vladimirov, Equations of mathematical physics, Nauka, M., 1976 (in Russian) | MR