Upper half-plane in the Grassmanian $Gr(n;2n)$
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 12 (2019) no. 4, pp. 406-411
Voir la notice de l'article provenant de la source Math-Net.Ru
We investigate the complex geometry of a multidimensional generalization $\mathcal{D}(n)$ of the upper-half-plane, which is homogeneous relative the group $G=SL(2n; \mathbb{R})$. For $n>1$ it is the pseudo Hermitian symmetric space which is the open orbit of $G=SL(2n; \mathbb{R})$ on the Grassmanian $Gr_\mathbb{C}(n;2n)$ of $n$-dimensional subspaces of $\mathbb{C}^{2n}$. The basic element of the construction is a canonical covering of $\mathcal{D}(n)$ by maximal Stein submanifolds — horospherical tubes.
Keywords:
Grassmanian, pseudo Hermitian symmetric space, cycle, horosphere, horospherical tube.
@article{JSFU_2019_12_4_a0,
author = {Simon Gindikin},
title = {Upper half-plane in the {Grassmanian} $Gr(n;2n)$},
journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
pages = {406--411},
publisher = {mathdoc},
volume = {12},
number = {4},
year = {2019},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JSFU_2019_12_4_a0/}
}
Simon Gindikin. Upper half-plane in the Grassmanian $Gr(n;2n)$. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 12 (2019) no. 4, pp. 406-411. http://geodesic.mathdoc.fr/item/JSFU_2019_12_4_a0/