Upper half-plane in the Grassmanian $Gr(n;2n)$
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 12 (2019) no. 4, pp. 406-411.

Voir la notice de l'article provenant de la source Math-Net.Ru

We investigate the complex geometry of a multidimensional generalization $\mathcal{D}(n)$ of the upper-half-plane, which is homogeneous relative the group $G=SL(2n; \mathbb{R})$. For $n>1$ it is the pseudo Hermitian symmetric space which is the open orbit of $G=SL(2n; \mathbb{R})$ on the Grassmanian $Gr_\mathbb{C}(n;2n)$ of $n$-dimensional subspaces of $\mathbb{C}^{2n}$. The basic element of the construction is a canonical covering of $\mathcal{D}(n)$ by maximal Stein submanifolds — horospherical tubes.
Keywords: Grassmanian, pseudo Hermitian symmetric space, cycle, horosphere, horospherical tube.
@article{JSFU_2019_12_4_a0,
     author = {Simon Gindikin},
     title = {Upper half-plane in the {Grassmanian} $Gr(n;2n)$},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {406--411},
     publisher = {mathdoc},
     volume = {12},
     number = {4},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2019_12_4_a0/}
}
TY  - JOUR
AU  - Simon Gindikin
TI  - Upper half-plane in the Grassmanian $Gr(n;2n)$
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2019
SP  - 406
EP  - 411
VL  - 12
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2019_12_4_a0/
LA  - en
ID  - JSFU_2019_12_4_a0
ER  - 
%0 Journal Article
%A Simon Gindikin
%T Upper half-plane in the Grassmanian $Gr(n;2n)$
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2019
%P 406-411
%V 12
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2019_12_4_a0/
%G en
%F JSFU_2019_12_4_a0
Simon Gindikin. Upper half-plane in the Grassmanian $Gr(n;2n)$. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 12 (2019) no. 4, pp. 406-411. http://geodesic.mathdoc.fr/item/JSFU_2019_12_4_a0/

[1] J.E. D'Atri, S.G. Gindikin, “Siegel domain realization of pseudo-Hermitian symmetric manifolds”, Geom. Dedicata, 46 (1993), 91–125 | DOI | MR | Zbl

[2] S.G. Gindikin, J. Faraut, “Pseudo-Hermitian symmetric spaces of tube type”, Progr. Nonlinear Differential Equations Appl., Topics in geometry, 20, 1996, 123–154 | MR | Zbl

[3] D.N. Akhiezer, S.G. Gindikin, “On Stein extensions of real symmetric spaces”, Math. Ann., 286 (1990), 1–12 | DOI | MR | Zbl

[4] S.G. Gindikin, T. Matsuki, “Stein extensions of Riemann symmetric spaces and dualities of orbits on flag manifolds”, Transformation Groups, 8:2003, 333–376 | MR | Zbl

[5] S.G. Gindikin, “Fourier transform and Hardy spaces of $\bar{\partial}$-cohomology in tube domains”, C. R. Acad. Sci. Paris, Ser. I Math., 315 (1992), 1139–1143 | MR | Zbl

[6] S.G. Gindikin, “Holomorphic language for $\bar{\partial}$-cohomology and representations of real semisimple Lie groups”, The Penrose Transform and Analytic Cohomology in Representation Theory, Cont. Math., 154, eds. M. Eastwood, J. Wolf, R. Zierau, Amer. Math. Soc., 1993, 103–115 | DOI | MR | Zbl

[7] T. Bailey, M. Eastwood, S.G. Gindikin, “Smoothly parameterized C̆ech cohomology of complex manifolds”, J. Geom. Anal., 15 (2005), 9–23 | DOI | MR | Zbl