The highest dimension of commutative subalgebras in Chevalley algebras
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 12 (2019) no. 3, pp. 351-354.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $L_\Phi(K)$ denotes a Chevalley algebra with the root system $\Phi$ over a field $K$. In 1945 A. I. Mal'cev investigated the problem of describing abelian subgroups of highest dimension in complex simple Lie groups. He solved this problem by transition to complex Lie algebras and by reduction to the problem of describing commutative subalgebras of highest dimension in the niltriangular subalgebra. Later these methods were modified and applied for the problem of describing large abelian subgroups in finite Chevalley groups. The main result of this article allows to calculate the highest dimension of commutative subalgebras in a Chevalley algebra $L_\Phi (K)$ over an arbitrary field.
Keywords: Chevalley algebra
Mots-clés : commutative subalgebra.
@article{JSFU_2019_12_3_a9,
     author = {Galina S. Suleimanova},
     title = {The highest dimension of commutative subalgebras in {Chevalley} algebras},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {351--354},
     publisher = {mathdoc},
     volume = {12},
     number = {3},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2019_12_3_a9/}
}
TY  - JOUR
AU  - Galina S. Suleimanova
TI  - The highest dimension of commutative subalgebras in Chevalley algebras
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2019
SP  - 351
EP  - 354
VL  - 12
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2019_12_3_a9/
LA  - en
ID  - JSFU_2019_12_3_a9
ER  - 
%0 Journal Article
%A Galina S. Suleimanova
%T The highest dimension of commutative subalgebras in Chevalley algebras
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2019
%P 351-354
%V 12
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2019_12_3_a9/
%G en
%F JSFU_2019_12_3_a9
Galina S. Suleimanova. The highest dimension of commutative subalgebras in Chevalley algebras. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 12 (2019) no. 3, pp. 351-354. http://geodesic.mathdoc.fr/item/JSFU_2019_12_3_a9/

[1] R. Carter, Simple groups of Lie type, Wiley and Sons, New York, 1972 | MR | Zbl

[2] E.A. Kirillova, G.S. Suleimanova, “Highest dimension commutative ideals of a niltriangular subalgebra of a Chevalley algebra over a field”, Trudy of Inst. of Math. $\$ Mech. UrO RAN, 24, no. 3, 2018, 98–108 | DOI | MR

[3] A.S. Kondratiev, “Subgroups of finite Chevalley groups”, Russian Math. Surveys, 41:1 (1986), 65–118 | DOI | MR

[4] V.M. Levchuk, G.S. Suleimanova, “Extremal and maximal normal abelian subgroups of a maximal unipotent subgroup in groups of Lie type”, Journal of Algebra, 349:1 (2012), 98–116 | DOI | MR | Zbl

[5] V.M. Levchuk, G.S. Suleimanova, “Thompson subgroups and large abelian unipotent subgroups of Lie-type groups”, Journal of Siberian Federal University. Mathematics $\$ Physics, 6:1 (2013), 64–74 | MR

[6] V.M. Levchuk, G.S. Suleimanova, “The generalized Mal'cev problem on abelian subalgebras of the Chevalley algebras”, Lobachevskii Journal of Mathematics, 86:4 (2015), 384–388 | DOI | MR

[7] A.I. Mal'cev, “Commutative subalgebras in semisimple Lie algebras”, Izv. Akad. Nauk SSSR. Ser. Mat., 8 (1945), 291–300

[8] E.P. Vdovin, “Large Abelian Unipotent Subgroups of Finite Chevalley Groups”, Algebra $\$ Logic, 40:5 (2001), 292–305 | DOI | MR | Zbl

[9] E.P. Vdovin, “Maximal Orders of Abelian Subgroups in Finite Chevalley Groups”, Math. Notes, 69:4 (2001), 475–498 | DOI | MR | Zbl