On uniqueness and continuous dependence on the initial data of the solution of a system of two loaded parabolic equations with the Cauchy data
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 12 (2019) no. 3, pp. 298-309.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the Cauchy problem for the system of one-dimensional loaded parabolic equations. Uniqueness and continuous dependence of solutions on the initial data in the class of smooth bounded functions is proved.
Keywords: loaded equation, system of parabolic equation, weak approximation method, Cauchy problem, uniqueness, continuous dependence of the solution on the initial data.
@article{JSFU_2019_12_3_a3,
     author = {Igor V. Frolenkov and Irina S. Antipina and Natalya M. Terskikh},
     title = {On uniqueness and continuous dependence on the initial data of the solution of a system of two loaded parabolic equations with the {Cauchy} data},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {298--309},
     publisher = {mathdoc},
     volume = {12},
     number = {3},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2019_12_3_a3/}
}
TY  - JOUR
AU  - Igor V. Frolenkov
AU  - Irina S. Antipina
AU  - Natalya M. Terskikh
TI  - On uniqueness and continuous dependence on the initial data of the solution of a system of two loaded parabolic equations with the Cauchy data
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2019
SP  - 298
EP  - 309
VL  - 12
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2019_12_3_a3/
LA  - en
ID  - JSFU_2019_12_3_a3
ER  - 
%0 Journal Article
%A Igor V. Frolenkov
%A Irina S. Antipina
%A Natalya M. Terskikh
%T On uniqueness and continuous dependence on the initial data of the solution of a system of two loaded parabolic equations with the Cauchy data
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2019
%P 298-309
%V 12
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2019_12_3_a3/
%G en
%F JSFU_2019_12_3_a3
Igor V. Frolenkov; Irina S. Antipina; Natalya M. Terskikh. On uniqueness and continuous dependence on the initial data of the solution of a system of two loaded parabolic equations with the Cauchy data. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 12 (2019) no. 3, pp. 298-309. http://geodesic.mathdoc.fr/item/JSFU_2019_12_3_a3/

[1] O.A. Bender, T.N. Shipina, “On the inverse Cauchy problem for a nonlinear parabolic system of equations”, Proceedings of the XLII regional scientific student conference on mathematics and computer science, SFU, Krasnoyarsk, 2009, 52–54 (in Russian) | MR

[2] I.V. Frolenkov, Yu.Ya. Belov, “On the existence of solutions for a class loaded two-dimensional parabolic equations with the Cauchy data”, Non-classical equations of mathematical physics, Institut of Mathematics, Novosibirsk, 2012, 262–279 (in Russian)

[3] I.V. Frolenkov, M.A. Darzhaa, “On the existence of solution of some problems for nonlinear loaded parabolic equations with Cauchy data”, Journal of Siberian Federal University. Mathematics $\$ Physics, 7:2 (2014), 173–185 | MR

[4] I.V. Frolenkov, G.V. Romanenko, “On solvability of some special systems of one-dimensional loaded parabolic equations and composite-type systems with Cauchy data”, Journal of Applied and Industrial Mathematics, 8:2 (2014), 196–207 (in Russian) | DOI | MR | Zbl

[5] G.A. Spichak, T.N. Shipina, “Problem of identification of coefficients in a non-linear system of equations of parabolic type”, Intern. conf. dedicated to the 80 birth anniversary of acad. M.M. Lavrentyev “Inverse and incorrect problems of mathematical physics”, Sib. scien. publish., Novosibirsk, 2012

[6] M.A. Yarovaya, I.V. Frolenkov, On the Cauchy problem for a one-dimensional loaded parabolic equation of special form, Graduate work, Siberian Federal University, Krasnoyarsk, 2015 (in Russian)