Global in space regularity results for the heat equation with Robin--Neumann type boundary conditions in time-varying domains
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 12 (2019) no. 3, pp. 355-370.

Voir la notice de l'article provenant de la source Math-Net.Ru

This article deals with the heat equation $$ \partial _{t}u-\partial _{x}^{2} u=f\; \text{in}\; D,\; D =\left\{ \left( t,x\right) \in \mathbb{R}^{2}:a,\psi \left( t\right) +\infty\right\} $$ with the function $\psi$ satisfying some conditions and the problem is supplemented with boundary conditions of Robin-Neumann type. We study the global regularity problem in a suitable parabolic Sobolev space. We prove in particular that for $f\in L^{2}(D)$ there exists a unique solution $u$ such that $u,\; \partial_{t}u,\; \partial_{x}^{j}u\in L^{2}\left( D\right),j=1,\;2.$ The proof is based on the domain decomposition method. This work complements the results obtained in [10].
Keywords: heat equation, unbounded non-cylindrical domains, Robin condition
Mots-clés : Neumann condition, anisotropic Sobolev spaces.
@article{JSFU_2019_12_3_a10,
     author = {Tahir Boudjeriou and Arezki Kheloufi},
     title = {Global in space regularity results for the heat equation with {Robin--Neumann} type boundary conditions in time-varying domains},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {355--370},
     publisher = {mathdoc},
     volume = {12},
     number = {3},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2019_12_3_a10/}
}
TY  - JOUR
AU  - Tahir Boudjeriou
AU  - Arezki Kheloufi
TI  - Global in space regularity results for the heat equation with Robin--Neumann type boundary conditions in time-varying domains
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2019
SP  - 355
EP  - 370
VL  - 12
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2019_12_3_a10/
LA  - en
ID  - JSFU_2019_12_3_a10
ER  - 
%0 Journal Article
%A Tahir Boudjeriou
%A Arezki Kheloufi
%T Global in space regularity results for the heat equation with Robin--Neumann type boundary conditions in time-varying domains
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2019
%P 355-370
%V 12
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2019_12_3_a10/
%G en
%F JSFU_2019_12_3_a10
Tahir Boudjeriou; Arezki Kheloufi. Global in space regularity results for the heat equation with Robin--Neumann type boundary conditions in time-varying domains. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 12 (2019) no. 3, pp. 355-370. http://geodesic.mathdoc.fr/item/JSFU_2019_12_3_a10/

[1] Yu.A. Alkhutov, “$L\sb p$-estimates for the solution of the Dirichlet problem for the heat equation in a ball”, J. Math. Sci., 142:3 (2007), 2021–2032 | DOI | MR | Zbl

[2] V.N. Aref'ev, L.A. Bagirov, “Solutions of the heat equation in domains with singularities”, Math. Notes, 64:1–2 (1998), 139–153 | DOI | MR | Zbl

[3] O.V. Besov, “Continuation of functions from $L\sb{p}{}\sp{l}$ and $W\sb{p}{}\sp{l}$”, Trudy Mat. Inst. Steklov., 89, 1967, 5–17 (in Russian) | MR | Zbl

[4] S. Cherfaoui, A. Kessab, A. Kheloufi, “On $2m$-th order parabolic equations with mixed boundary conditions in non-rectangular domains”, Sib. Elektron. Mat. Izv., 14 (2017), 73–91 | MR | Zbl

[5] S. Guesmia, “Large time and space size behaviour of the heat equation in non-cylindrical domains”, Arch. Math., 101 (2013), 293–299 | DOI | MR | Zbl

[6] S. Hofmann, J.L. Lewis, “The $L\sp p$ Neumann problem for the heat equation in non-cylindrical domains”, J. Funct. Anal., 220:1 (2005), 1–54 | DOI | MR | Zbl

[7] A. Kheloufi, B.-K. Sadallah, “Parabolic equations with Robin type boundary conditions in a non-rectangular domain”, Electron. J. Differential Equations, 2010, no. 25 | MR

[8] A. Kheloufi, “Existence and uniqueness results for parabolic equations with Robin type boundary conditions in a non-regular domain of $\mathbb{R}^{3}$”, Applied Mathematics and Computation, 220 (2013), 756–769 | DOI | MR | Zbl

[9] A. Kheloufi, B.K. Sadallah, “Study of the heat equation in a symmetric conical type domain of $ \mathbb{R} ^{N+1}$”, Mathematical Methods in the Applied Sciences, 37 (2014), 1807–1818 | DOI | MR | Zbl

[10] A. Kheloufi, B.K. Sadallah, “Study of a parabolic equation with mixed Dirichlet-Neumann type boundary conditions in unbounded noncylindrical domains”, Journal of Advanced Research in Applied Mathematics, 7:4 (2015), 62–77 | MR

[11] A. Kheloufi, “On parabolic equations with mixed Dirichlet-Robin type boundary conditions in a non-rectangular domain”, Mediterr. J. Math., 13 (2016), 1787–1805 | DOI | MR | Zbl

[12] K. Kuliev, L.E. Persson, “An extension of Rothe's method to noncylindrical domains”, Applications of Mathematics, 52:5 (2007), 365–389 | DOI | MR | Zbl

[13] V.V. Kurta, A.E. Shishkov, “Uniqueness classes of solutions of boundary problems for nondivergent second order parabolic equations in noncylindrical domains”, Ukrainian Mathematical Journal, 42:7 (1990), 819–825 | DOI | MR | Zbl

[14] R. Labbas, A. Medeghri, B.-K. Sadallah, “Sur une équation parabolique dans un domaine non cylindrique”, C. R. Math. Acad. Sci. Paris, 335 (2002), 1017–1022 | DOI | MR | Zbl

[15] R. Labbas, A. Medeghri, B.-K. Sadallah, “An $L^p$-approach for the study of degenerate parabolic equations”, Electron. J. Differential Equations, 2005, no. 36 | MR

[16] O.A. Ladyzhenskaya, V.A. Solonnikov, N.N. Uraltseva, Linear and Quasilinear Equations of Parabolic Type, American Math. Soc. Translation, 23, Providence, R.I, 1968 | MR

[17] J.L. Lions, E. Magenes, Problèmes aux Limites Non Homogènes et Applications, v. 1, 2, Mathematic Works and Research, Dunod, Paris, 1968 | MR | Zbl

[18] F. Paronetto, “An existence result for evolution equations in non-cylindrical domains”, Nonlinear Differ. Equ. Appl., 20 (2013), 1723–1740 | DOI | MR | Zbl

[19] B.-K. Sadallah, “Etude d'un problème $2m$-parabolique dans des domaines plan non rectangulaires”, Boll. Un. Mat. Ital. B (6), 2:1 (1983), 51–112 | MR | Zbl

[20] B.K. Sadallah, “Existence de la solution de l'equation de la chaleur dans un disque”, C. R. Acad. Sci. Paris Ser. I. Math., 327 (1998), 813–816 | DOI | MR | Zbl

[21] B.K. Sadallah, “Regularity of a parabolic equation solution in a non-smooth and unbounded domain”, J. Aust. Math. Soc., 84:2 (2008), 265–276 | DOI | MR | Zbl

[22] B.K. Sadallah, “A remark on a parabolic problem in a sectorial domain”, Applied Mathematics E-Notes, 8 (2008), 263–270 | MR | Zbl

[23] G. Savaré, “Parabolic problems with mixed variable lateral conditions: an abstract approach”, J. Math. Pures Appl. (9), 76:4 (1997), 321–351 | DOI | MR | Zbl