A sufficient condition for absolute continuity of conjugations between interval exchange maps
Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 12 (2019) no. 3, pp. 276-284.

Voir la notice de l'article provenant de la source Math-Net.Ru

A class of topological equivalent generalized interval exchange maps of genus one and of the same bounded combinatorics is considered in the paper. A sufficient condition for absolute continuity of the conjugation between two maps from this class is provided.
Keywords: conjugate map, interval exchange map, Rauzy–Veech induction, renormalization
Mots-clés : dynamical partition, martingale.
@article{JSFU_2019_12_3_a1,
     author = {Abdumajid S. Begmatov},
     title = {A sufficient condition for absolute continuity of conjugations between interval exchange maps},
     journal = {\v{Z}urnal Sibirskogo federalʹnogo universiteta. Matematika i fizika},
     pages = {276--284},
     publisher = {mathdoc},
     volume = {12},
     number = {3},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JSFU_2019_12_3_a1/}
}
TY  - JOUR
AU  - Abdumajid S. Begmatov
TI  - A sufficient condition for absolute continuity of conjugations between interval exchange maps
JO  - Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
PY  - 2019
SP  - 276
EP  - 284
VL  - 12
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JSFU_2019_12_3_a1/
LA  - en
ID  - JSFU_2019_12_3_a1
ER  - 
%0 Journal Article
%A Abdumajid S. Begmatov
%T A sufficient condition for absolute continuity of conjugations between interval exchange maps
%J Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika
%D 2019
%P 276-284
%V 12
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JSFU_2019_12_3_a1/
%G en
%F JSFU_2019_12_3_a1
Abdumajid S. Begmatov. A sufficient condition for absolute continuity of conjugations between interval exchange maps. Žurnal Sibirskogo federalʹnogo universiteta. Matematika i fizika, Tome 12 (2019) no. 3, pp. 276-284. http://geodesic.mathdoc.fr/item/JSFU_2019_12_3_a1/

[1] A. Avila, M. Viana, “Simplicity of Lyapunov spectra: proof of the Zorich-Kontsevich conjecture”, Acta Math., 198 (2007), 1–56 | DOI | MR | Zbl

[2] K. Cunha, D. Smania, “Renormalization for piecewise smooth homeomorphisms on the circle”, Ann. Inst. H. Poincare, Anal. Non Lin., 30:3 (2013), 441–462 | DOI | MR | Zbl

[3] K. Cunha, D. Smania, “Rigidity for piecewise smooth homeomorphisms on the circle”, Adv. in Math., 250 (2014), 193–226 | DOI | MR | Zbl

[4] S. Marmi, P. Moussa, J.-C. Yoccoz, “The cohomological equation for Roth type interval exchange transformations”, Journal of the Amer. Math. Soc., 18 (2005), 823–872 | DOI | MR | Zbl

[5] S. Marmi, P. Moussa, J.-C. Yoccoz, “Linearization of generalized interval exchange maps”, Ann. of Math., 176 (2012), 1583–1646 | DOI | MR | Zbl

[6] M. Viana, Dynamics of interval exchange transformations and Teichmüller flows, Lecture notes of graduate courses taught at IMPA in 2005 and 2007, 2008

[7] K. Khanin, A. Teplinsky, “Renormalization horseshoe and rigidity for circle diffeomorphisms with breaks”, Comm. Math. Phys., 320 (2013), 347–377 | DOI | MR | Zbl

[8] K. Khanin, S. Kocić, “Renormalization conjecture and rigidity theory for circle diffeomorphisms with breaks”, Geom. Funct. Anal., 24:6 (2014), 2002–2028 | DOI | MR | Zbl

[9] S. Kocić, “Generic rigidity for circle diffeomorphisms with breaks”, Comm. Math. Phys., 344:2 (2016), 427–445 | DOI | MR | Zbl

[10] A. Begmatov, K. Cunha, A. Dzhalilov, On the renormalizations of circle homeomorphisms with several break points, 2018 | Zbl

[11] A. Begmatov, K. Cunha, On the convergence of renormalizations of piecewise smooth homeomorphisms on the circle, 2018 | Zbl

[12] Y. Katznelson, D. Ornstein, “The absolute continuity of the conjugation of certain diffeomorphisms of the circle”, Ergod. Theor. Dyn. Sys., 9 (1989), 681–690 | DOI | MR

[13] M. Keane, “Interval exchange transformations”, Math. Z., 141 (1975), 25–31 | DOI | MR | Zbl

[14] A.N. Shiryayev, Probability, New York, NY, USA, 1984 | MR | Zbl